[Luogu P2051] [BZOJ 1801] [AHOI2009]中国象棋

本文探讨了一道与中国象棋炮布局相关的算法问题,旨在计算在N行M列的棋盘上,炮的不同布局方案数量。文章详细介绍了问题背景、输入输出格式、样例解析及数据范围,并提供了一段C++代码实现,通过动态规划的方法,考虑炮的特殊走法规则,最终求得方案数模特定数值的结果。
洛谷传送门
BZOJ传送门

题目描述

这次小可可想解决的难题和中国象棋有关,在一个 N N N M M M列的棋盘上,让你放若干个炮(可以是 0 0 0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法。大家肯定很清楚,在中国象棋中炮的行走方式是:一个炮攻击到另一个炮,当且仅当它们在同一行或同一列中,且它们之间恰好 有一个棋子。你也来和小可可一起锻炼一下思维吧!

输入输出格式

输入格式:

一行包含两个整数 N N N M M M,之间由一个空格隔开。

输出格式:

总共的方案数,由于该值可能很大,只需给出方案数模 9999973 9999973 9999973的结果。

输入输出样例

输入样例#1:
1 3
输出样例#1:
7

说明

样例说明

除了 3 3 3个格子里都塞满了炮以外,其它方案都是可行的,所以一共有 2 ∗ 2 ∗ 2 − 1 = 7 2*2*2-1=7 2221=7种方案。

数据范围

100 % 100\% 100%的数据中 N N N M M M均不超过 100 100 100

50 % 50\% 50%的数据中 N N N M M M至少有一个数不超过 8 8 8

30 % 30\% 30%的数据中 N N N M M M均不超过 6 6 6

解题分析

其实就是要求每一列每一行放的个数不超过2个。

然后我们发现对于一行来说似乎我们并不关心放在了这一行的哪里, 只需要记录有几列放了 1 1 1个或者 2 2 2个, 然后利用乘法原理, 就可以暴力转移了。

转移详解在代码中。

代码如下:

#include <cstdio>
#include <cstring>
#include <cmath>
#include <cctype>
#include <cstdlib>
#include <algorithm>
#define R register
#define IN inline
#define W while
#define gc getchar()
#define MX 105
#define ll long long
#define MOD 9999973
ll dp[MX][MX][MX];
int n, m;
IN ll mul(ll x) {return (x - 1) * x / 2 % MOD;}
IN void add(int &x, R int ad) {x += ad; if(x >= MOD) x -= MOD;}
int main(void)
{
    R int i, j, k, bd, nex, ans = 0;
    dp[0][0][0] = 1;
    scanf("%d%d", &n, &m);
    for (i = 0; i < n; ++i)
    {
        nex = i + 1;
        for (j = 0; j <= m; ++j)
        {
            bd = m - j;
            for (k = 0; k <= bd; ++k)
            {
                if(dp[i][j][k])
                {
                    (dp[nex][j][k] += dp[i][j][k]) %= MOD;
                    if(m - j - k) (dp[nex][j + 1][k] += dp[i][j][k] * (m - j - k) % MOD) %= MOD;//empty -> single
                    if(m - j - k > 1) (dp[nex][j + 2][k] += dp[i][j][k] * mul(m - j - k) % MOD) %= MOD;//empty * 2 -> two single
                    if(j) (dp[nex][j - 1][k + 1] += dp[i][j][k] * j % MOD) %= MOD;//single -> double
                    if((m - j - k) && j) (dp[nex][j][k + 1] += dp[i][j][k] * (m - j - k) % MOD * j % MOD) %= MOD;//empty + single -> single + double
                    if(j > 1) (dp[nex][j - 2][k + 2] += dp[i][j][k] * mul(j) % MOD) %= MOD;//2 * single -> 2 * double
                }
            }
        }
    }
    for (i = 0; i <= m; ++i)
    {
        bd = m - i;
        for (j = 0; j <= bd; ++j) add(ans, dp[n][i][j]);
    }
    printf("%d", ans);
}

洛谷P1177是【模板】排序题,可使用归并排序来解决。归并排序的核心思是分治法,即将一个大问题分解为多个小问题,分别解决后再合并结果。 归并排序主要步骤如下: 1. **分解**:将待排序数组从中间分成两个子数组,递归地对这两个子数组进排序。 2. **合并**:将两个已排序的子数组合并成一个有序数组。 以下是使用归并排序解决洛谷P1177题目的代码实现: ```cpp #include<bits/stdc++.h> #include<iomanip> using namespace std; #define IOS ios::sync_with_stdio(0),cin.tie(0),cout.tie(0) const int MAXN = 1e5 + 5; int a[MAXN], b[MAXN]; int n; // 数组长度 // 合并两个已排序的子数组 void mergesort(int l1, int r1, int l2, int r2) { int i = l1, j = l2, k = l1; while (i <= r1 && j <= r2) { if (a[i] <= a[j]) { b[k++] = a[i++]; } else { b[k++] = a[j++]; } } while (i <= r1) b[k++] = a[i++]; while (j <= r2) b[k++] = a[j++]; for (i = l1; i <= r2; i++) { a[i] = b[i]; } } // 递归进归并排序 void merge(int l, int r) { if (l >= r) { return; } int mid = (l + r) / 2; merge(l, mid); merge(mid + 1, r); mergesort(l, mid, mid + 1, r); } int main() { IOS; cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; } merge(0, n - 1); for (int i = 0; i < n; i++) { cout << a[i]; if (i < n - 1) cout << " "; } cout << endl; return 0; } ``` 上述代码中,`merge`函数用于递归地将数组分解为子数组,`mergesort`函数用于合并两个已排序的子数组。在`main`函数中,首先读取输入的数组,然后调用`merge`函数进排序,最后输出排序后的数组。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值