洛谷传送门
BZOJ传送门
题目描述
这次小可可想解决的难题和中国象棋有关,在一个 N N N行 M M M列的棋盘上,让你放若干个炮(可以是 0 0 0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法。大家肯定很清楚,在中国象棋中炮的行走方式是:一个炮攻击到另一个炮,当且仅当它们在同一行或同一列中,且它们之间恰好 有一个棋子。你也来和小可可一起锻炼一下思维吧!
输入输出格式
输入格式:
一行包含两个整数 N N N, M M M,之间由一个空格隔开。
输出格式:
总共的方案数,由于该值可能很大,只需给出方案数模 9999973 9999973 9999973的结果。
输入输出样例
输入样例#1:
1 3
输出样例#1:
7
说明
样例说明
除了 3 3 3个格子里都塞满了炮以外,其它方案都是可行的,所以一共有 2 ∗ 2 ∗ 2 − 1 = 7 2*2*2-1=7 2∗2∗2−1=7种方案。
数据范围
100 % 100\% 100%的数据中 N N N和 M M M均不超过 100 100 100
50 % 50\% 50%的数据中 N N N和 M M M至少有一个数不超过 8 8 8
30 % 30\% 30%的数据中 N N N和 M M M均不超过 6 6 6
解题分析
其实就是要求每一列每一行放的个数不超过2个。
然后我们发现对于一行来说似乎我们并不关心放在了这一行的哪里, 只需要记录有几列放了 1 1 1个或者 2 2 2个, 然后利用乘法原理, 就可以暴力转移了。
转移详解在代码中。
代码如下:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cctype>
#include <cstdlib>
#include <algorithm>
#define R register
#define IN inline
#define W while
#define gc getchar()
#define MX 105
#define ll long long
#define MOD 9999973
ll dp[MX][MX][MX];
int n, m;
IN ll mul(ll x) {return (x - 1) * x / 2 % MOD;}
IN void add(int &x, R int ad) {x += ad; if(x >= MOD) x -= MOD;}
int main(void)
{
R int i, j, k, bd, nex, ans = 0;
dp[0][0][0] = 1;
scanf("%d%d", &n, &m);
for (i = 0; i < n; ++i)
{
nex = i + 1;
for (j = 0; j <= m; ++j)
{
bd = m - j;
for (k = 0; k <= bd; ++k)
{
if(dp[i][j][k])
{
(dp[nex][j][k] += dp[i][j][k]) %= MOD;
if(m - j - k) (dp[nex][j + 1][k] += dp[i][j][k] * (m - j - k) % MOD) %= MOD;//empty -> single
if(m - j - k > 1) (dp[nex][j + 2][k] += dp[i][j][k] * mul(m - j - k) % MOD) %= MOD;//empty * 2 -> two single
if(j) (dp[nex][j - 1][k + 1] += dp[i][j][k] * j % MOD) %= MOD;//single -> double
if((m - j - k) && j) (dp[nex][j][k + 1] += dp[i][j][k] * (m - j - k) % MOD * j % MOD) %= MOD;//empty + single -> single + double
if(j > 1) (dp[nex][j - 2][k + 2] += dp[i][j][k] * mul(j) % MOD) %= MOD;//2 * single -> 2 * double
}
}
}
}
for (i = 0; i <= m; ++i)
{
bd = m - i;
for (j = 0; j <= bd; ++j) add(ans, dp[n][i][j]);
}
printf("%d", ans);
}
本文探讨了一道与中国象棋炮布局相关的算法问题,旨在计算在N行M列的棋盘上,炮的不同布局方案数量。文章详细介绍了问题背景、输入输出格式、样例解析及数据范围,并提供了一段C++代码实现,通过动态规划的方法,考虑炮的特殊走法规则,最终求得方案数模特定数值的结果。
478

被折叠的 条评论
为什么被折叠?



