C++线段树初步(上)

先给大家举个栗子

//本例题摘自
https://wenku.baidu.com/view/b9e84029a66e58fafab069dc5022aaea998f4116.html
描述
  老管家是一个聪明能干的人。他为财主工作了整整10年,财主为了让自已账目更加清楚。要求管家每天记k次账,由于管家聪明能干,因而管家总是让财主十分满意。但是由于一些人的挑拨,财主还是对管家产生了怀疑。于是他决定用一种特别的方法来判断管家的忠诚,他把每次的账目按1,2,3…编号,然后不定时的问管家问题,问题是这样的:在a到b号账中最少的一笔是多少?为了让管家没时间作假他总是一次问多个问题。
  在询问过程中账本的内容可能会被修改。
  
  输入格式:
  输入中第一行有两个数m,n表示有m(m<=100000)笔账,n表示有n个问题,n<=100000。
  接下来每行为3个数字,第一个p为数字1或数字2,第二个数为x,第三个数为y。
 当p=1 则查询x,y区间。
 当p=2 则改变第x个数为y。
——————————————————————————————
  相信很多初学者看到这道题第一反应都是用数组模拟。但是请注意数据规模为100000。若直接存入一维数组中再依次计算x-y的区间和无疑会TLE。若一开始使用前缀和相加的形式,中途一旦改变某个数据的值,剩下所有保留的前缀和都需要更改。因此我们需要找到一种更加高效的查找、修改方法来快速找到该值。
  图片源自网络
  如上图,线段树是一种集索引和数据本身为一体的数据结构。其采用了二分思想,修改和计算的步骤都继承了其时间复杂度为O(logN)的优点,显然可以满足该题要求。
  那么,我们该如何构建一棵线段树呢?
  显然,线段树为一颗二叉树,则设其父节点为tree[n],子节点为tree[2*n]与tree[2*n+1]。因此我们可以用数组进行构造操作,其下标可以连通子节点与父节点。

注:下列代码片以寻找区间最大值与和为目的(博主很懒懒得改源程序(`・ω・´)),并非为例题标准源程序。

struct sd
{
    int left;//当前集合左结点
    int right;//右结点
    int sum;//当前和
    int maxx;//当前最大值
    sd()
    {
        memset(this,0,sizeof(this));//初始化值
    }
};
sd tree[500000];

又:网上各种大犇有介绍其他构造方法的,博主(蒟蒻)不予介绍(TAT)。
不过可以不开结构体,另开几个数组存储…
注:数组一定要开的够大(4*N)以防超界RE!

  接下来开始构造线段树,博主用递归构造,但好像也可以用递推。
  

void updata(int n)//更新父节点的初值
{
    tree[n].maxx=max(tree[n*2].maxx,tree[n*2+1].maxx);
    tree[n].sum=tree[n*2].sum+tree[n*2+1].sum;
}
void build_tree(int t,int lef,int rig)
//分别代表对应tree数组中下标,区间左结点,右结点
//默认应由1开始,1为左结点,数据范围为右结点
{
    tree[t].left=lef;//保存当前区间
    tree[t].right=rig;
    if(lef==rig)//若为最底层节点则从数组中读入数据,博主事先保存在了pre中
    {
        tree[t].sum=pre[lef];
        tree[t].maxx=pre[lef];
        return;
    }
    int mid=(lef+rig)/2 ;//二分递归构造
    build_tree(t*2,lef,mid);
    build_tree(t*2+1,mid+1,rig);
    updata(t);
}

  若题目没有输入初值,则此步骤不需要updata。
  可使用移位运算符加速*2与*2+1,具体请参考百度百科“移位运算符”词条。
  此步骤完成后线段树上都拥有了初值,接下来就开始进行求和和求最大值的步骤。
  

int inquiry_sum(int t,int lef,int rig)
{
    if(lef==tree[t].left&&rig==tree[t].right)//正好为查找的区间
    {
        return tree[t].sum;
    }
    int mid=(tree[t].left+tree[t].right)/2;//二分
    if(mid>=rig)  return inquiry_sum(t*2,lef,rig);
    //说明查找区间只在当前区间的左半区间范围内
    //注意此处不能改变lef和rig的值,博主找了半天bug才发现...
    else if(mid<lef)  return inquiry_sum(t*2+1,lef,rig);
    ///说明查找区间只在当前区间的右半区间范围内
    else 
return inquiry_sum(t*2,lef,mid)+inquiry_sum(t*2+1,mid+1,rig); 
//否则为跨区间,在两边搜索
} 

此处应该注意的是*2与*2+1的对应关系,与前面构造的时候应保证一致。
最大值查找方式也差不多,贴上函数:

int inquiry_max(int t,int lef,int rig)
{
    if(lef==tree[t].left&&rig==tree[t].right)
    {
        return tree[t].maxx;
    }
    int mid=(tree[t].left+tree[t].right)/2;
    if(mid>=rig)return inquiry_max(t*2,lef,rig);
    else if(mid<lef)return inquiry_max(t*2+1,lef,rig);
    else return max(inquiry_max(t*2,lef,mid),inquiry_max(t*2+1,mid+1,rig));
}

(博主有变量和函数都定成英文的习惯,所以代码格外长..(。・ω・。))
接下来就是改数据的操作了,同样递归完成。

void change(int now,int tar,int delta)
//对应当前查找的数组下标,目标的位置,以及改变后的数据
{
    if(tree[now].left ==tar&&tree[now].right==tar)//找到改点则修改
    {
        tree[now].sum=delta;
        tree[now].maxx=delta;
        return;
    }
    int mid=(tree[now].left+tree[now].right)/2;//否则二分查找
    if(tar<=mid)change(2*now,tar,delta);//左半区
    else change(2*now+1,tar,delta);//右半区
    updata(now);//完成后修改父节点
}

修改数据的方式可以自己写,依题目而定。
最后贴上博主的(辣鸡)代码

#include<bits/stdc++.h>
using namespace std;
struct sd
{
    int left;int right;int sum;int maxx;
    sd()
    {
        memset(this,0,sizeof(this));
    }
};
sd tree[100005];
int pre[10005];
void updata(int n)
{
    tree[n].maxx=max(tree[n*2].maxx,tree[n*2+1].maxx);
    tree[n].sum=tree[n*2].sum+tree[n*2+1].sum;
}
void build_tree(int t,int lef,int rig)
{
    tree[t].left=lef;
    tree[t].right=rig;
    if(lef==rig)
    {
        tree[t].sum=pre[lef];
        tree[t].maxx=pre[lef];
        return;
    }
    int mid=(lef+rig)/2 ;
    build_tree(t*2,lef,mid);
    build_tree(t*2+1,mid+1,rig);
    updata(t);
}
int inquiry_sum(int t,int lef,int rig)
{
    if(lef==tree[t].left&&rig==tree[t].right)
    {
        return tree[t].sum;
    }
    int mid=(tree[t].left+tree[t].right)/2;
    if(mid>=rig)return inquiry_sum(t*2,lef,rig);
    else if(mid<lef)return inquiry_sum(t*2+1,lef,rig);
    else return inquiry_sum(t*2,lef,mid)+inquiry_sum(t*2+1,mid+1,rig); 
} 
int inquiry_max(int t,int lef,int rig)
{
    if(lef==tree[t].left&&rig==tree[t].right)
    {
        return tree[t].maxx;
    }
    int mid=(tree[t].left+tree[t].right)/2;
    if(mid>=rig)return inquiry_max(t*2,lef,rig);
    else if(mid<lef)return inquiry_max(t*2+1,lef,rig);
    else return max(inquiry_max(t*2,lef,mid),inquiry_max(t*2+1,mid+1,rig));
}
void change(int now,int tar,int delta)
{
    if(tree[now].left ==tar&&tree[now].right==tar)
    {
        tree[now].sum=delta;
        tree[now].maxx=delta;
        return;
    }
    int mid=(tree[now].left+tree[now].right)/2;
    if(tar<=mid)change(2*now,tar,delta);
    else change(2*now+1,tar,delta);
    updata(now);
}
void add(int now,int tar,int delta)
{
    if(tree[now].left ==tar&&tree[now].right==tar)
    {
        tree[now].sum+=delta;
        tree[now].maxx+=delta;
        return;
    }
    int mid=(tree[now].left+tree[now].right)/2;
    if(tar<=mid)add(2*now,tar,delta);
    else add(2*now+1,tar,delta);
    updata(now);
}
int main()
{
    printf("请输入数据个数\n");
    int num;
    scanf("%d",&num);
    printf("请依次输入数据\n");
    for(int i=1;i<=num;i++)
    {
        scanf("%d",&pre[i]);
    } 
    build_tree(1,1,num);
    int a,b,c;
    printf("操作开始\n");
    printf("Tips:输入格式\n");
    printf("1,x,y-->输出第x个至第y个数据的和\n");
    printf("2,x,y-->输出第x个至第y个数据的最大值\n");
    printf("3,x,y-->将第x个数据改为y\n");
    printf("4,x,y-->将第x个数据加上y\n");
    printf("若要退出程序,输入3个0\n");
    while (true)
    {
    scanf("%d%d%d",&a,&b,&c);
    if(a==0)break;
    if(a==1)printf("操作结果:%d\n",inquiry_sum(1,b,c));
    if(a==2)printf("操作结果:%d\n",inquiry_max(1,b,c));
    if(a==3)
    {
        change(1,b,c);
        printf("操作完成!\n");
    }
    if(a==4)
    {
         add(1,b,c);
         printf("操作完成!\n");
    }
    }
    printf("感谢使用!\n");
    return 0;
}

本次分享就到这里了。不过显然在实际操作中还有不少问题,例如想要使一个区间中所有数据都改变,若一个一个地查找就非常慢了,达到了N(logN)的时间复杂度,优化方法将会在下期揭晓。我们下期再见。

  • 4
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
线段树和树状数组都是用于解决区间查询问题的数据结构,它们在不同的场景下有不同的应用。 首先,树状数组(Binary Indexed Tree,BIT),也称为Fenwick树,是一种用于高效实现区间查询的数据结构。它通过将原始数组进行分块存储,在每个块内用累加的方式存储前缀和,从而实现了快速的区间查询和单点更新操作。树状数组的主要优势是实现简单、效率高,适用于求解一维区间和问题,例如动态求解数组前缀和、求解逆序对等。但是树状数组不适用于区间修改操作,即不能有效地处理某个区间内的元素更新。 其次,线段树(Segment Tree)是一种二叉树的数据结构,用于处理区间查询和更新操作。线段树将整个区间划分为若干个子区间,并在每个节点中存储该区间的某种统计信息,例如区间和、最大值、最小值等。线段树的构造过程是一个递归的过程,通过不断地划分区间直到达到单个元素的程度。线段树的主要优势是能够高效地处理区间查询和区间修改操作,适用于解决多维区间查询问题,例如区间最值查询、区间更新等。 总之,树状数组和线段树都是用于解决区间查询问题的数据结构。树状数组适用于一维场景,实现简单、效率高,但不能处理区间修改操作;线段树适用于多维场景,能够高效地处理区间查询和修改操作。在实际问题中,根据具体情况选择适合的数据结构可以提高解题效率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值