【DP】【斜率】滑雪场的缆车

L i n k Link Link

J Z O J JZOJ JZOJ 1257 1257 1257

D e s c r i p t i o n Description Description

科罗拉州的Farmer Ron打算为他的奶牛们建造一个滑雪场(虽然需要的设施仅仅是一部缆车)。建造一部缆车,需要从山脚到山顶立若干根柱子,并用钢丝连结它们。你可以认为相对于地面,柱子的高度可以忽略不计。每相邻两根柱子间都有钢丝直接相连。显然,所有钢丝的任何一段都不能在地面之下。
为了节省建造的费用,FR希望在工程中修建尽可能少的柱子。他在准备修建缆车的山坡上选定了N(2<=N<=5,000)个两两之间水平距离相等的点,并且测量了每个点的高度H(0<=H<=1,000,000,000)。并且,按照国家安全标准,相邻两根柱子间的距离不能超过K(1<=K<=N-1)个单位长度。柱子间的钢丝都是笔直的。
FR希望你帮他计算一下,在满足下列条件的情况下,他至少要修建多少根柱子:首先,所有的柱子都必须修建在他所选定的点上,且每一段钢丝都必须高于地面或者正好跟地面相切。相邻两根柱子的距离不大于K个单位长度。当然,在第一个点与最后一个点上一定都要修建柱子。

I n p u t Input Input

第1行: 两个整数 N 和 K,用空格隔开
第2…N+1行: 每行包括一个正整数,第i+1行的数描述了第i个点的高度

O u t p u t Output Output

第1行: 输出一个整数,即FR最少需要修建的柱子的数目

S a m p l e Sample Sample I n p u t Input Input

13 4
0
1
0
2
4
6
8
6
8
8
9
11
12

S a m p l e Sample Sample O u t p u t Output Output

5

H i n t Hint Hint

FR最少要修建5根柱子(分别在第1,5,7,9,13个山坡上的点)。钢丝在1-5,5-7,7-9以及12-13这4段上与地 面相切。
如果FR只在1,5,9,13这4个点修建柱子,那5-9这一段钢丝就有一部分在地下。如果柱子建在1,7,13这3个点,虽然钢丝都是在地面之上,但这两段钢丝的长度都超过了最大长度限制。对于这组输入数据,找不到一个合法方案,使方案中需要修建的柱子的数目少于5根。

T r a i n Train Train o f of of T h o u g h t Thought Thought

D P DP DP
以一个点 i i i为目标,我们看 i i i的前 k k k个单位长度中的点,是否能到点 i i i,取最小值
判断是否能到点 i i i,可以通过斜率判断(详见 c o d e code code

C o d e Code Code

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>

using namespace std;

int h[5005], f[5005], n, k;

double absx(double a, double b)
{return max(a, b) - min(a , b);}

bool check(int s, int e)
{
	double slope = (h[e] - h[s]) * 1.0 / (e - s);//计算斜率
	double hnow = h[s];//hnow表示按照斜率计算出的当前高度
	for (int i = s + 1; i < e; ++i)
	{
		hnow += slope;
		if (h[i] > hnow && absx(hnow, h[i]) > 0.0000001) return 0;//若是中间有一根柱子高度超出了这一条线,显然就是不可行的
	}
	return 1;
}

int main()
{
	scanf("%d%d", &n, &k);
	for (int i = 1; i <= n; ++i)
		scanf("%d", &h[i]);
	memset(f, 0x7f, sizeof(f));
	f[1] = 1; 	f[2] = 2;
	for (int i = 3; i <= n; ++i)
	{
		int last = i - k;
		if (last < 1) last = 1;
		for (int j = last; j < i; ++j)
			if (f[j] + 1 < f[i]) {
				if (check(j, i)) f[i] = min (f[j] + 1, f[i]);
		}
	}
	printf("%d", f[n]);
} 
<think>好的,用户想了解斜率优化动态规划的概念及实现方法。首先,我需要回忆一下动态规划的基础知识,特别是优化方法。动态规划通常有递推和记忆化搜索两种实现方式,而斜率优化属于一种高级的优化技巧,用于降低时间复杂度。 用户提到的参考引用中提到,递推的效率比记忆化搜索高,并且很多优化技巧如滚动数组、单调队列、斜率优化都建在递推上。所以,斜率优化应该属于递推方法的一种扩展。 接下来,我需要明确斜率优化的核心思想。根据已有的知识,斜率优化通常用于处理状态转移方程中的决策变量,通过分析转移方程的数学形式,将其转化为斜率问题,从而利用单调队列或凸包等数据结构来优化决策过程。 例如,当状态转移方程形如$dp[i] = \min\{dp[j] + f(i,j)\}$,其中$f(i,j)$可以分解为与i和j相关的项,可能可以将其转换为斜率的形式。比如,若$f(i,j)=a[i]*b[j]+c[i]+d[j]$,可能将式子整理为关于$b[j]$和$dp[j]+d[j]$的线性表达式,进而比较不同j值的斜率,选择最优的决策点。 需要解释为什么这种方法有效,可能涉及到维护一个下凸包或上凸包,确保每次决策时选取的j是最优的,从而将时间复杂度从O(n^2)降低到O(n)或O(n log n)。 然后,结合用户提供的引用内容,特别是引用[2]提到的QP优化和DP结合,可能斜率优化在路径规划中的应用,但用户的问题更关注动态规划中的斜率优化,所以需要专注于算法实现的步骤。 需要给出具体的例子,比如任务安排问题,或者最大子序列问题,来展示斜率优化的应用步骤。例如,经典的任务安排问题,其中状态转移方程可以斜率优化,通过维护一个单调队列来快速找到最优的前驱状态。 在实现步骤方面,应该分步骤解释:问题分析、状态转移方程整理为斜率形式、数据结构的选择(如单调队列)、维护凸包的过程、以及最终的时间复杂度分析。 同时,要注意数学表达式的正确格式,使用$$...$$和$...$,并确保LaTeX语法正确。例如,将状态转移方程写成$$dp[i] = \min_{j<i}\{ dp[j] + (S + T_i)(C_i - C_j) \}$$,然后展开分析。 另外,用户提供的引用中有提到变积分PID和QP优化,虽然这些可能与斜率优化无直接关联,但需要确保不混淆概念,专注于动态规划中的斜率优化部分。 最后,生成相关问题时要围绕斜率优化的应用场景、与其他优化方法的比较、具体实现中的挑战等,帮助用户深入理解。</think>### 斜率优化动态规划详解 #### 概念解析 斜率优化动态规划(Slope Optimization DP)是一种通过**分析状态转移方程的斜率特性**来优化决策过程的方法,可将部分动态规划问题的时间复杂度从$O(n^2)$降至$O(n)$或$O(n \log n)$[^1]。其核心是将状态转移方程转换为**线性关系式**,通过维护**决策点集的凸包**快速筛选最优决策。 #### 算法原理 1. **状态转移方程重构** 设状态转移方程为: $$dp[i] = \min_{j<i}\{ dp[j] + f(i,j) \}$$ 若$f(i,j)$可分解为$A(i) \cdot B(j) + C(i) + D(j)$形式,则方程可改写为: $$dp[i] = C(i) + \min_{j<i}\{ A(i) \cdot B(j) + (dp[j] + D(j)) \}$$ 此时决策变量$j$的优劣可转化为**点$(B(j), dp[j]+D(j))$的斜率比较**。 2. **凸包维护** 通过维护决策点集的**下凸包**(当$A(i)$单调递增)或**上凸包**(当$A(i)$单调递减),使用单调队列/栈快速剔除无效决策点。 #### 实现步骤(以经典任务安排问题为例) **问题描述** 处理$n$个任务,每个任务耗时$t_i$,费用系数$c_i$。目标最小化总费用: $$总费用 = \sum_{i=1}^n (\text{完成时间} \times c_i)$$ **状态转移方程** $$dp[i] = \min_{j<i}\left\{ dp[j] + (S + T_i)(C_i - C_j) \right\}$$ 其中$T_i = \sum_{k=1}^i t_k$, $C_i = \sum_{k=1}^i c_k$,$S$为启动延迟。 **斜率优化过程** 1. **方程变形** 将方程展开为: $$dp[i] = S \cdot C_i + T_i \cdot C_i + \min_{j<i}\{ dp[j] - S \cdot C_j - T_i \cdot C_j \}$$ 令: $$ \begin{cases} k = T_i \\ x_j = C_j \\ y_j = dp[j] - S \cdot C_j \\ \end{cases} $$ 则状态转移简化为: $$dp[i] = (S + T_i)C_i + \min_{j<i}\{ y_j - k x_j \}$$ 2. **决策点筛选** 最优决策点需满足: $$\frac{y_j - y_k}{x_j - x_k} \leq k_i \quad (\text{下凸包条件})$$ 使用单调队列维护凸包,队首即为当前最优决策。 **Python实现示例** ```python def slope_optimization_dp(n, S, t, c): T = [0]*(n+1) # 前缀时间和 C = [0]*(n+1) # 前缀费用和 dp = [0]*(n+1) q = deque([0]) # 单调队列存储决策点索引 for i in range(1, n+1): T[i] = T[i-1] + t[i-1] C[i] = C[i-1] + c[i-1] # 剔除队首非最优决策 while len(q)>=2 and (dp[q[1]] - dp[q[0]]) <= (S + T[i])*(C[q[1]] - C[q[0]]): q.popleft() j = q[0] dp[i] = dp[j] + (S + T[i] - T[j])*(C[i] - C[j]) # 维护下凸包 while len(q)>=2 and (dp[i]-dp[q[-1]])*(C[q[-1]]-C[q[-2]]) <= (dp[q[-1]]-dp[q[-2]])*(C[i]-C[q[-1]]): q.pop() q.append(i) return dp[n] ``` #### 关键优化点 - **时间复杂度**:从$O(n^2)$优化至$O(n)$ - **数据结构**:单调队列实现$O(1)$时间复杂度的决策筛选 - **适用条件**:状态转移方程需满足**决策单调性**且参数满足**斜率单调性** #### 典型应用场景 1. 任务调度问题 2. 最优库存控制 3. 资源分配优化 4. 路径规划中的轨迹平滑(如自动驾驶中的QP优化前处理[^2])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值