【Tarjan】受欢迎的牛

链接

受欢迎的牛

题目描述

被所有奶牛喜欢的奶牛就是一头明星奶牛。每头奶牛总是喜欢自己的,奶牛之间的“喜欢”是可以传递的——如果 A 喜欢 B,B 喜欢 C,那么 A 也喜欢 C。牛栏里共有N头奶牛,给定一些奶牛之间的喜欢关系,请你算出有多少头奶牛可以当明星。

样例输入

3 3
1 2
2 1
2 3

样例输出

1

思路

我们可以想,既然喜欢可以传递,那么也就是只要一个点能到另一个点也可以返回,那么我们就可以得知这条路径上的所有点都是互相喜欢的,那就可以缩成一个点来处理,同时记录这个缩点的点的个数
那我们来考虑如何才能成为所有牛都喜欢的明星
在缩点后,我们来寻找一个点——此点出度为0,若此点只有一个,则说明图上其他点都可以到达此点,那么此点的所有牛都是明星,那如果这个点不只一个,那就没有明星

代码


#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>

using namespace std;

int tt, t, p, top, n, m, ans, anss;
int h[10005], num[10005], sum[10005];
int s[10005], dfn[10005], low[10005], col[10005];

struct node
{
	int from, to, next;
}g[100005];

void add(int x, int y)
{
	g[++t] = (node){x, y, h[x]}; h[x] = t;
}

void Tarjan(int x)
{
	dfn[x] = low[x] = ++tt;
	s[++top] = x;
	for(int i = h[x]; i; i = g[i].next)
	{
		int to = g[i].to;
		if(!dfn[to])
		{
			Tarjan(to);
			low[x] = min(low[x], low[to]);
		}
		else if(!col[to]) low[x] = min(low[x], low[to]);
	}	
	if(dfn[x] == low[x]) 
	{
		col[x] = ++p;
		sum[p]++;
		while(s[top] != x)
		{
			sum[p]++;
			col[s[top--]] = p;
		}
		top--;
	}//缩点
}

int main()
{
	scanf("%d%d", &n, &m); 
	for(int i = 1; i <= m; ++i)
	{
		int a, b;	
		scanf("%d%d", &a, &b);
		add(a, b);	
	}
	for(int i = 1; i <= n; ++i)
		if(!dfn[i]) Tarjan(i);
	for(int i = 1; i <= t; ++i)
	{
		int to = g[i].to, from = g[i].from;
		if(col[to] != col[from])
			num[col[from]]++;
	}//统计图上每个点的出度
	for(int i = 1; i <= p; ++i)
		if(num[i] == 0) ans += sum[i], anss++;
	if(anss == 1) printf("%d", ans);
		else printf("0");
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值