【矩阵乘法】矩阵求和

该博客介绍了如何使用矩阵快速幂算法解决求解矩阵S = A * A^2 * A^3... * A^k的问题,其中矩阵元素取模。通过构建特定的矩阵B并进行快速幂运算来简化计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

链接

YbtOJ 6-1-4

题目描述

给出一个nn的矩阵和一个正整数k ,求S = A * A^2 * A ^ 3… A^k 。矩阵中的每个数对 取模。

思路

构建一个矩阵B,左上放一个矩阵A,右上放一个大小相同的单位矩阵,右下也放一个同样大小的单位矩阵,然后直接跑快速幂就好了

代码

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#define ll long long

using namespace std;

ll n, m, tk;

struct matrix
{
   
	ll n, m;
	ll a[105][105];
}A, B, Ans;

void pre()
{
   
	for(int i = 1; i <= 2 * n; ++i)
		Ans.a[i][i] = 1;
	B.n = B.m = Ans.n = Ans.m = n * 2;
}

matrix operator 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值