Description
一张骨牌可被分为两个正方形。每个正方形为空或有1至6个点。如下图
任一张骨牌能被转动180°,保持其正面始终朝上。
为了使骨牌上下点数之差最少,求所需旋转的次数最少为多少?
Input
输入文件的第一行是一个正整数n(1≤n≤1000),表示多米诺骨牌数。接下来的n行表示n个多米诺骨牌的点数。每行有两个用空格隔开的正整数,表示多米诺骨牌上下方块中的点数a和b,且1≤a,b≤6。
Output
输出文件仅一行,包含一个整数。表示求得的最小旋转次数。
Sample Input
4
6 1
1 5
1 3
1 2
Sample Output
1
思路
设
f
[
i
]
[
j
]
为
前
i
张
牌
之
中
差
值
为
j
的
最
小
翻
动
次
数
f[i][j]为前i张牌之中差值为j的最小翻动次数
f[i][j]为前i张牌之中差值为j的最小翻动次数
动态转移方程:
f
[
i
]
[
j
]
=
m
i
n
(
f
[
i
−
1
]
[
j
−
a
[
i
]
+
b
[
i
]
]
,
f
[
i
−
1
]
[
j
−
b
[
i
]
+
a
[
i
]
]
+
1
)
f[i][j]=min(f[i-1][j-a[i]+b[i]],f[i-1][j-b[i]+a[i]]+1)
f[i][j]=min(f[i−1][j−a[i]+b[i]],f[i−1][j−b[i]+a[i]]+1)
第一种为不翻,所以同前面一样,第二种是翻,所以翻动次数要加1
代码
#include<iostream>
#include<cstdio>
#define m 6000//最大差值为12000,最小差值为0
using namespace std;
int f[1005][12005],n,a[1005],b[1005];
int main()
{
memset(f,127/3,sizeof(f));//赋初值
scanf("%d",&n);
for (int i=1;i<=n;i++)
scanf("%d%d",&a[i],&b[i]);
f[0][m]=0;//赋初值*2
for (int i=1;i<=n;i++)
for (int j=1;j<=m*2;j++)
f[i][j]=min(f[i-1][j-a[i]+b[i]],f[i-1][j-b[i]+a[i]]+1);
int k=0;
while ((f[n][m-k]==f[0][1])&&(f[n][m+k]==f[0][1])) k++;//找一个最小的差值
printf("%d",min(f[n][m-k],f[n][m+k]));//找一个最小的翻动次数
return 0;
}