考研日记-day7
1 高数
- 学习时间:3h
- 学习内容:
- 昨天终于把函数极限连续板块的真题刷完了,又是50道题左右,所以今天就开第二章一元函数微分学的强化了,听了一节课。
- 总结一下昨天和今天的知识点:
- 1.f(x)连续等价于f(x)左连续且右连续。
- 2.间断点:1)第一类间断点:可去间断点、跳跃间断点;2)第二类间断点(左右极限至少有一个不存在的):无穷间断点、振荡间断点。
- 3.闭区间连续函数的性质:有界性、最值性、介值性:存在一点的函数值等于两个界限之间的某个值;推论:f(x)能取到介于最大值和最小值之间的任何值、零点定理:异号则存在零点。
- 4.可导等价于左右导数都存在且相等。
- 5.微分:近似增量,线性主部。
- 6.一元微分中,可导等价于可微,可导可微一定连续,连续不一定可导可微,f(x)可导可推f(x)连续,不能推f’(x)连续,也不能推f’(x)在某点的极限存在(左右极限可能不等)。
- 7.洛必达最多用到的导数阶数:1)f(x)n阶可导,则最多用到n-1阶导数;2)f(x)n阶连续可导,则最多用到n阶导数。
- 8.求导公式和求导法则:有理运算法则和复合函数求导法、隐函数求导法、反函数的导数、参数方程求导法、对数求导法、高阶导数:记住常用公式。
- 题型:
- 1.讨论函数在某点的连续性,可结合可导性一起考查:利用极限求参或者判断。
- 2.间断点分类:找出可能间断点,利用极限判断。
- 3.利用闭区间连续函数性质的证明题,可结合中值定理一起考查。
- 4.利用导数定义求极限:主要是凑定义,结合求极限方法做。
- 5.利用导数定义求导数:结合题设条件凑所求点导数的定义,分段函数分界点的导数一般利用定义求。
- 6.利用导数定义判定可导性:根据题设条件判断某点的导数定义是否存在,由定义式极限存在推某点导数存在需要三个条件:方框趋于0,不等于0,既能趋于0+也能趋于0-,若只趋于一侧,则只能推得一侧导数存在;由某点导数存在推定义式极限存在只需前面两个条件。对于极限里除定义式以外的因子,还需要满足同阶的要求 (即极限是一个常数)。
2 线代
- 学习时间:2h
- 学习内容:
- 刷了向量组相关无关的20道左右的真题,这部分问题可以转化为方程组和矩阵的问题来解答,不过也要熟悉向量组相关的定义和关系,比如以少表多,多的相关等。
3 英语
- 学习时间:1h30min
- 学习内容:
- 下午做了2000text4,然后复习了前面的几篇精读,晚上看精读视频对下午做的真题进行整理。
4 专业课408
- 学习时间:
- 学习内容:
- 听计组第三章最后一部分关于虚拟存储器的内容,本部分可结合操作系统虚拟存储部分一起复习,不过我还没开操作系统,然后做了课后习题,第三章就算是结束了。最后花了点时间预习第四章前面两节。
- 知识点回顾:
- 1.虚拟存储器将主存和辅存统一编址,解决主存容量问题。虚地址即逻辑地址,用户编程所用,实地址即物理地址,是虚地址对应的实际的主存单元地址。虚地址比实地址大得多,位数多。采用全相联映射,采用回写法。
- 2.页式虚拟存储器:以页为基本单位,需要页表存储虚拟页和物理页的对应关系,包括有效位(装入位)、脏位(修改位)、引用位(使用位)等。
- 3.地址转换:虚拟地址转换为物理地址;页表基址寄存器:存放页表首地址,用以找到页表在主存的位置;通过虚拟页号找到物理页号后和页内偏移地址拼接得到物理地址。
- 4.快表TLB:存页表项的副本,减少访存次数,工作原理类似于Cache。
- 5.同时具有TLB和Cache时CPU的访存过程、缺失的情况、page缺失时,TLB和Cache也一定缺失。Cache缺失处理由硬件完成,TLB缺失既可以用硬件也可以用软件来处理。
- 6.段式虚拟存储器:按照程序的逻辑结构划段,具有逻辑独立性,以段为基本单位,需要段表,段长可变,分段对程序员不透明。
- 7.段页式虚拟存储器:程序按逻辑分段,每段再划分为固定大小的页,地址变换需要两次查表。
- 8.虚拟存储器和Cache的比较:局部性原理应用快速缓存思想等。