Missashe高数强化学习笔记
说明:这篇笔记用于博主对高数强化课所学进行记录和总结。由于部分内容写在博主的日记博客里,所以博主会不定期将其重新copy到本篇笔记里。
第一章 函数极限连续
第一节 函数
第二节 极限
第三节 连续
知识点回顾
- 1.f(x)连续等价于f(x)左连续且右连续。
- 2.间断点:1)第一类间断点:可去间断点、跳跃间断点;2)第二类间断点(左右极限至少有一个不存在的):无穷间断点、振荡间断点。
- 3.闭区间连续函数的性质:有界性、最值性、介值性:存在一点的函数值等于两个界限之间的某个值;推论:f(x)能取到介于最大值和最小值之间的任何值、零点定理:异号则存在零点。
常考题型
- 1.讨论函数在某点的连续性,可结合可导性一起考查:利用极限求参或者判断。
- 2.间断点分类:找出可能间断点,利用极限判断。
- 3.利用闭区间连续函数性质的证明题,可结合中值定理一起考查。
第二章 一元函数微分学
第一节 导数与微分
知识点回顾
- 1.可导等价于左右导数都存在且相等。
- 2.微分:近似增量,线性主部。
- 3.一元微分中,可导等价于可微,可导可微一定连续,连续不一定可导可微,f(x)可导可推f(x)连续,不能推f’(x)连续,也不能推f’(x)在某点的极限存在(左右极限可能不等)。
- 4.洛必达最多用到的导数阶数:1)f(x)n阶可导,则最多用到n-1阶导数;2)f(x)n阶连续可导,则最多用到n阶导数。
- 5.求导公式和求导法则:有理运算法则和复合函数求导法、隐函数求导法、反函数的导数、参数方程求导法、对数求导法、高阶导数:记住常用公式。
常考题型
- 1.导数与微分的概念
- 1)利用导数定义求极限:主要是凑定义,结合求极限方法做。
- 2)利用导数定义求导数:结合题设条件凑所求点导数的定义,分段函数分界点的导数一般利用定义求。
- 3)利用导数定义判定可导性:根据题设条件判断某点的导数定义是否存在,由定义式极限存在推某点导数存在需要三个条件:方框趋于0,不等于0,既能趋于0+也能趋于0-,若只趋于一侧,则只能推得一侧导数存在;由某点导数存在推定义式极限存在只需前面两个条件。对于极限里除定义式以外的因子,还需要满足同阶的要求 (即极限是一个常数)。
- 4)f(x)=g(x)|x-a|,g(x)在x=a处连续,则f(x)在x=a处可导的充要条件是g(a)=0。
- 5)f(x)和|f(x)|可导性之间的关系:1)两者不能互推;2)f(x)连续的条件下,若f(x0)≠0,则|f(x)|在x0处可导等价于f(x)在x0处可导;若f(x0)=0,则|f(x)|在x0处可导等价于f’(x0)=0。
- 6)善用几何法画图分析问题。
- 2.导数的几何意义:导数值是该点切线的斜率;若两曲线相切,则在切点处的函数值和导数值都相等。
- 3.导数与微分的计算
- 1)判断复合函数在某点的可导性:若在x0处内外层导数都存在,则复合函数在x0处可导,且导数值为内外层导数值乘积(即满足复合函数链式求导法),这种方法不用求复合函数具体表达式;若在x0处内外层导数至少有一个不存在,则复合函数不一定不可导,此时先求出复合函数的具体表达式,再进一步研究在x0处的可导性。
- 2)经典的错误:极限式中的分母需要满足两个条件:1)趋于0;2)不等于0,即只能趋于0但不能取到0,如x–>0,xsin1/x作分母时,极限不存在,因为xsin1/x是可以真等于0的。
- 3)求高阶导数:1)代公式;2)求一阶导和二阶导,然后归纳n阶导;3)利用泰勒公式或者泰勒级数,系数相等;4)遇到高幂次三角函数可以考虑降幂再用公式。
第二节 导数应用
知识点回顾
- 1.微分中值定理:罗尔定理、拉格朗日中值定理、柯西定理、泰勒定理。尤其是拉格朗日中值定理建立了f(x)和f’(x)的联系。
- 2.极值:
- 1)函数在闭区间[a,b]上的极值只能在开区间(a,b)上取得,端点处不能取到极值;若函数在闭区间上的最值在开区间上某点取得,则函数在该点处必取得极值。
- 2)极值的必要条件:x0是f(x)的极值点且f(x)在x0处可导,则f’(x0)=0。导数为0的点称为驻点,函数可导的条件下,极值点必为驻点,驻点不一定为极值点。一般函数的条件下,极值点只可能为驻点和导数不存在的点。
- 3)极值的第一充分条件:看x0处一阶导左右是否变号。
- 4)极值的第二充分条件:f’(x0)=0,f’'(x0)≠0,则二阶导大于0取极小值,小于0取极大值(大凹小凸)。
- 5)极值的第三充分条件:在x0处,1~n-1阶导均为0,n阶导不为0,若n为偶数,则取得极值,大凹小凸;若n为奇数,则取得拐点。
- 3.最值:比较出来的。f(x)在闭区间的开区间内仅有唯一极值点,则极值也是相应的最值。
- 4.凹凸性和拐点:二阶导大凹小凸;拐点是曲线上的点;必要条件和充分条件类比极值,导数阶数提高一阶。
- 5.渐近线:水平渐近线、铅直渐近线、斜渐近线。同侧无穷,水平和斜渐近线只能存在一个,不同侧无穷,可以一边是水平渐近线,一边是斜渐近线。
- 6.曲率:K,曲率半径:R=1/K。
常考题型
- 1.求单调区间和极值,利用必要条件和充分条件求解,对于隐函数或者抽象函数,一般用第二充分条件,因为无法判断一阶导左右是否变号。
- 2.根据题设条件,由保号性之类的性质,得出一阶导二阶导三阶导等和0的大小关系,在根据充分条件判断极值拐点等。
- 3.求极值、凹凸区间和拐点,同1。
- 4.求渐近线或者判断渐近线条数,根据定义求极限即可,其中斜渐近线,除了求极限,还可考虑转化为y=ax+b+α(x),α(x)→0。
- 5.曲率、曲率圆的计算,记住公式就行。
- 6.方程根的存在性:利用零点定理或者罗尔定理,确定至少有n个根。
- 7.方程根的个数:利用单调性或者罗尔定理推论,确定至多有n个根。结合根的存在性(第1条),即可确定根的个数到底有几个。目前观察下来,有两种结合比较常用:
- 1)零点定理+单调性,这是最常规的做法,高中就这么做;
- 2)零点定理+罗尔定理推论,一个推至少,一个推至多,即可夹逼确定。当然罗尔定理也可以结合后面两个,具体情况具体分析啦。
- 8.对含参方程进行变形时,尽量把参数单独分离出来,避免分类讨论,也方便利用几何意义画图来分析(方程根转化为交点问题)。
- 9.函数不等式常用方法:单调性、最大最小值、拉格朗日中值定理、泰勒公式、凹凸性。很多时候的问题都可以通过构造辅助函数,然后求导利用单调性解决。
- 10.两个参数的函数不等式可考虑将其中一个参数变量化,构造辅助函数,然后求导利用单调性。
- 11.遇到f(x)和f’'(x)或者高阶导,优先考虑泰勒公式将两者联系起来。
- 12.微分中值定理证明题:
- 1.单中值点且含有一阶导的证明:构造辅助函数用罗尔定理。有时虽然含有二阶导,但本质上还是这类问题,相当于整体阶数都提高了一阶,只是构造的辅助函数带有
f
′
(
x
)
f{'}(x)
f′(x)而已。构造辅助函数方法有:
- 1)分析法:其实就是瞪眼法哈哈哈,分析一下哪个函数的导数等于所需方程。
- 2)微分方程法:求所需方程的通解H(x,y)=C,再把y替换成f(x)就是所需辅助函数。
- 3)已有结论快速判断。
- 2.双中值点且含有两个一阶导:不要求两个中值点不等则在同一区间上用两次中值定理(拉格朗日或者柯西),要求两个中值点不等则分成两个子区间,在两个子区间上分别用拉格朗日中值定理。区间的分界点的函数值不是随便找的,要根据题设采用逆推法分析,这样得出的函数值才能把题目证明出来。
- 3.单中值点且含有高阶导:用带拉格朗日余项的泰勒公式,x0点选择题目中提供函数值和导数值信息多的点。
- 1.单中值点且含有一阶导的证明:构造辅助函数用罗尔定理。有时虽然含有二阶导,但本质上还是这类问题,相当于整体阶数都提高了一阶,只是构造的辅助函数带有
f
′
(
x
)
f{'}(x)
f′(x)而已。构造辅助函数方法有:
第三章 一元函数积分学
第一节 不定积分
知识点回顾
- 1.两个概念:原函数、不定积分:f(x)的全体原函数。
- 2.原函数的存在性:1)区间上连续必有原函数。2)区间上有第一类间断点则没有原函数,有第二类间断点可能有原函数。
- 3.性质和基本公式;用来运算的,要背下来。
- 4.三种积分方法:第一类换元法(凑微分法)、第二类换元法(真换元)、分部积分法。
- 5.三类常见可积函数积分:
- 1)有理函数积分:一般方法:部分分式法;特殊方法:加项减项拆或凑微分降幂。
- 2)三角有理式积分:一般方法:万能代换;特殊方法:三角变形,换元,分部。
- 3)简单无理函数积分:根式整体换元。
常考题型
- 1.计算不定积分
- 1)第一种是直接给你一个不定积分让你算,要熟练掌握三大积分方法以及三种可积函数的积分方法,尤其是注意有理函数的积分,多项式可能会给的比较复杂。跟三角函数有关的不定积分会比较难算,但不止三角函数,其实各种类型函数的不定积分都可以出成难题,需要多做多见。
- 2)第二种其实就是给你一些函数关系式,让你先把具体的函数求出来再积分,也就转化成第一种问题了。求具体函数一般是换元来做。
- 2.不定积分杂例:没有固定的套路,根据题目条件具体分析。求分段函数的原函数时,注意原函数存在则一定连续。
第二节 定积分
知识点回顾
- 1.定积分的概念:本质是和式极限,分、匀、和、精。表示的是一个值,与积分变量无关。还可以利用定积分定义求极限。
- 2.几何意义:前提是下限小于上限,定积分的值等于曲边梯形的面积、面积的负值或者上方面积减去下方面积之差。
- 3.可积性:指的是定积分存在。
- 1)必要条件: f ( x ) f(x) f(x)可积则 f ( x ) f(x) f(x)有界。
- 2)充分条件:
f ( x ) f(x) f(x)连续则 f ( x ) f(x) f(x)可积。
f ( x ) f(x) f(x)有界且只有有限个间断点则 f ( x ) f(x) f(x)可积。
f ( x ) f(x) f(x)只有有限个第一类间断点则 f ( x ) f(x) f(x)可积。有第二类间断点可能可积。
- 4. f ( x ) f(x) f(x)可积和 f ( x ) f(x) f(x)存在原函数是两个不同的概念,之间没有直接关联。
- 5.计算:牛顿莱布尼兹公式、换元积分法、分部积分法、利用奇偶性和周期性、利用公式:点火公式等。
- 6.变上限积分:掌握变上限积分的求导。
- 7.性质:不等式的性质和积分中值定理。
常考题型
- 1.定积分的概念、性质及几何意义
- 1)定积分定义求极限。
- 2)求一个变限积分的极限,且上下限同时出现x,可考虑积分中值定理,可以消去x或者利用等价无穷小代换等。
- 3)求一个定积分的极限,但被积函数中含有n次幂:
- ①可考虑广义积分中值定理,将不含n次幂的部分提出来,然后将含有n次幂的部分积分算出来(含有n),再整体取极限。
- ②放缩不等式然后利用夹逼定理。
- 4)图像相关问题,利用定积分的几何意义:面积。注意:定积分的几何意义前提是下限小于上限,如果不注意这点,会导致符号的差异。
- 2.定积分计算:熟练掌握上面写的积分法。
- 1)奇偶性简化运算。
- 2)定积分的几何意义简化运算,如 ∫ 0 a a 2 − x 2 d x = π 4 a 2 \int_{0}^{a} \sqrt{a^{2}-x^{2}} \, dx = \frac{\pi}{4} a^{2} ∫0aa2−x2dx=4πa2等。
- 3)带绝对值的被积函数:
- ①分区间讨论;
- ②找到一个不变号的区间,尤其是三角函数有关的。
- 4)点火公式的运用,以及 ∫ 0 π x f ( sin x ) d x = π 2 ∫ 0 π f ( sin x ) d x \int_{0}^{π}xf(\sin x)dx=\frac{\pi }{2} \int_{0}^{\pi } f(\sin x)dx ∫0πxf(sinx)dx=2π∫0πf(sinx)dx的运用。
- 5)给出积不出函数或者一个导函数 f ′ ( x ) f'(x) f′(x)常用分部积分法,前者还可以用累计积分交换顺序(二重积分)。
- 6)给出抽象函数关系式,会用牛顿莱布尼兹公式逆写变限积分,然后求导解题。
- 7)区间再现:常用于被积函数原函数不易求出的定积分运算中,但不是万能的。
- 8)套娃积分:当做常数两边同时积分,可以算出套娃的这个常数,然后代入原式等。和微分中套娃导数一个做法。
- 3.变上限积分函数及应用
- 1)知识补充:
- ①连续性: f ( x ) f(x) f(x)在闭区间[a,b]上可积,则 ∫ a x f ( t ) d t \int_{a}^{x} f(t) dt ∫axf(t)dt(令为 F ( x ) F(x) F(x))在[a,b]上连续。
- ②可导性: f ( x ) f(x) f(x)连续时, F ( x ) = ∫ a x f ( t ) d t F(x) = \int_{a}^{x} f(t) dt F(x)=∫axf(t)dt才是 f ( x ) f(x) f(x)的原函数。当 f ( x ) f(x) f(x)存在可去间断点时, F ( x ) F(x) F(x)在该点处可导但导数值是 f ( x ) f(x) f(x)在该点的极限值而不是函数值,当 f ( x ) f(x) f(x)存在跳跃间断点时, F ( x ) F(x) F(x)在该点处连续但不可导,且左导数和右导数不等。
- ③奇偶性:设 f ( x ) f(x) f(x)连续,若 f ( x ) f(x) f(x)为奇函数,则全体变上限积分均为偶函数;若 f ( x ) f(x) f(x)为偶函数,则只有 ∫ 0 x f ( x ) d x \int_{0}^{x} f(x) dx ∫0xf(x)dx才为奇函数。
- 2)利用三个性质判断奇偶性、连续性、可导性。
- 3)求含变上限积分的式子的极限:洛必达、积分中值定理(包括广义)、等价代换,有时积分中值定理会有奇效。
- 4)利用定积分的几何意义画图解题。
- 4.积分不等式
- 1)常用方法:变量代换、积分中值定理、变上限积分:题目中含有 f ( x ) f(x) f(x)单调的条件时、柯西积分不等式、定积分不等式性质。
- 2)积分比大小:本质上就是被积函数的比较。由于都是恒大于小于,所以可以直接在被积函数中代入一点进行比较,一般代入端点,端点无意义则求极限。
- 3)含有 f ( x ) f(x) f(x)和 f ′ ( x ) f'(x) f′(x)的不等式:利用拉格朗日或者变上限积分联系起来。
- 4)含平方则考虑柯西积分不等式。
第三节 反常积分
知识点回顾
- 1.无穷区间上的反常积分:上下限含有 ∞ \infty ∞的积分,利用积分的极限(而非定积分的和式极限)来定义,若该极限存在,则称反常积分收敛,反之则发散。
- 2.无界函数的反常积分: f ( x ) f(x) f(x)在点a的任一邻域内都无界,则点a称为 f ( x ) f(x) f(x)的瑕点。上下限或积分区间含有瑕点的积分,也是利用积分的极限来定义,极限存在则收敛,反之则发散。
- 3.若反常积分可拆分为多个积分,则这些积分都收敛时原积分才收敛,有一个积分发散则原积分发散。
- 4.比较判别法:大收小收,小散大散。
- 5.比较法的极限形式: f ( x ) f(x) f(x)和 g ( x ) g(x) g(x)都非负连续,求极限:若极限>0,则同敛散;若极限=0,则下面大上面小,大收小收;若极限=+ ∞ \infty ∞,则上面大下面小,小散大散。
- 6.p积分:
- ∫ a ∞ 1 x p d x { p > 1 , 收敛 p ≤ 1 , 发散 ( a > 0 ) \int_{a}^{\infty} \frac{1}{x^{p}} dx \begin{cases}p > 1, &\text{收敛} \\p \leq 1, & \text{发散}\end{cases}\quad (a > 0) ∫a∞xp1dx{p>1,p≤1,收敛发散(a>0)
- ∫ a b 1 ( x − a ) p d x { p < 1 , 收敛 p ≥ 1 , 发散 \int_{a}^{b} \frac{1}{(x - a)^{p}} dx \begin{cases}p < 1, & \text{收敛} \\p\geq 1, & \text{发散}\end{cases} ∫ab(x−a)p1dx{p<1,p≥1,收敛发散
- ∫ a b 1 ( b − x ) p d x { p < 1 , 收敛 p ≥ 1 , 发散 \int_{a}^{b} \frac{1}{(b - x)^{p}} dx \begin{cases}p < 1, & \text{收敛} \\p\geq 1, & \text{发散}\end{cases} ∫ab(b−x)p1dx{p<1,p≥1,收敛发散
常考题型
-
1.反常积分的敛散性:定义、比较法、p积分。
- 1)能定义直接算出来就直接判断,不能定义判断就考虑和p积分进行比较,当然也可以找其他函数进行比较,具体情况具体分析。
- 2)一些结论:
-
2.反常积分计算:换元、分部。其实就是定积分的计算方式,只是上下限会出现无穷。
-
3.注:利用奇偶性化简积分只能在已知敛散性的情况下用来算值,而不能用来判断敛散性。