机器学习---支持向量机

目录

一、概念

二、核函数介绍

三、步骤

四、分类和回归选择

五、总结


一、概念

支持向量机(Support Vector Machine,SVM)是一种常用的机器学习算法,SVM可以用于线性和非线性分类问题,回归以及异常值检测
其基本原理是通过在特征空间中找到一个超平面,将不同类别的样本分开,并且使得离超平面最近的样本点到超平面的距离最大化

以一个二维平面为例,判定边界是一个超平面(在本图中其实是一条线,但是可以将它想象为一个平面乃至更高维形式在二维平面的映射),它是由支持向量所确定的(支持向量是离判定边界最近的样本点,它们决定了判定边界的位置)。
间隔的正中就是判定边界,间隔距离体现了两类数据的差异大小

若严格地规定所有的样本点都不在“缓冲区”,都正确的在两边,称为硬间隔分类; 但是在一般情况下,不易实现,这里有两个问题:
第一,它只对线性可分的数据起作用。第二,有异常值的干扰。

为了避免这些问题,可使用软间隔分类:
在保持“缓冲区”尽可能大和避免间隔违规之间找到一个良好的平衡,在sklearn中的SVM类,可以使用超参数 C(惩罚系数),控制了模型的复杂度和容错能力。较小的C值会导致容错能力较高(即更宽的缓冲区),可能会产生更多的错误分类(即间隔违规);较大的C值会导致容错能力较低,可能会产生更少的错误分类。

二、核函数介绍

核函数是特征转换函数,它可以将数据映射到高维特征空间中,从而更好地处理非线性关系。
核函数的作用是通过计算两个样本之间的相似度(内积)来替代显式地进行特征映射,从而避免了高维空间的计算开销。

在SVM中,核函数的选择非常重要,它决定了模型能够学习的函数空间。常见的核函数包括:

线性核函数(Linear Kernel):最简单的核函数,它在原始特征空间中直接计算内积,适用于线性可分的情况。K(X,y) = (X^T) * y

多项式核函数(Polynomial Kernel):通过多项式函数将数据映射到高维空间,可以处理一定程度的非线性关系。(可拟合出复杂的分割超平面,但可选参数太多,阶数高后计算困难,不稳定) K(X,y) = ( (X^T) * y + c ) ^ d , 其中 c 为常数,d 为多项式的阶数。

高斯核函数(Gaussian Kernel):也称为径向基函数(Radial Basis Function,RBF),通过高斯分布将数据映射到无穷维的特征空间,可以处理更复杂的非线性关系。形式为 K(x,y) = exp( -|| x-y || ^2 / (2 σ ^2) ) 。
|| x - y || 表示向量 x 和 y 之间的欧氏距离,即它们各个维度差值的平方和的平方根。
σ 是高斯核函数的参数,控制了样本之间相似度的衰减速度。σ 越小,样本之间的相似度下降得越快;σ 越大,样本之间的相似度下降得越慢。

sigmoid核函数(Sigmoid Kernel):通过sigmoid函数将数据映射到高维空间,适用于二分类问题。 σ(x) = 1 / (1 + exp(-x))
 

三、步骤

  1. 数据预处理:将数据集划分为训练集和测试集,并进行特征缩放(对数据进行标准化)。

  2. 构建模型:选择合适的核函数和惩罚系数,构建SVM模型。

  3. 训练模型:使用训练集对模型进行训练,通过最大化间隔来找到最优的超平面。

  4. 预测:使用训练好的模型对测试集进行预测。

四、分类和回归选择

通常情况下,当标签值是离散型变量时,我们将问题视为分类问题,而当标签值是连续性变量时,我们将问题视为回归问题。

在支持向量机(SVM)算法中,SVC用于分类,SVR用来做回归

在分类问题中,我们的目标是将输入数据分为不同的离散类别。常见的分类算法包括逻辑回归、决策树、随机森林和支持向量机等。

在回归问题中,我们的目标是预测连续性变量的值。回归问题涉及到对输入数据进行建模,以预测一个或多个连续的输出变量。常见的回归算法包括线性回归、决策树回归、支持向量回归和神经网络等。

五、总结

  1. 原理:支持向量机通过构造一个超平面,在特征空间中形成一个判决边界,将不同类别的样本分开。超平面的选择是使得与超平面最近的样本点到该超平面的距离(即间隔)最大化。

  2. 分类与回归:支持向量机既可以用于分类问题,也可以用于回归问题。对于分类问题,支持向量机通过将样本划分到不同的类别,从而实现分类;对于回归问题,支持向量机通过拟合一个函数来预测连续的输出。

  3. 核函数:支持向量机可以通过核函数将低维特征映射到高维特征空间,从而处理非线性问题。常用的核函数包括线性核、多项式核、高斯核等。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值