分治算法求最近点对
题目:
给定的二维平面上有n个点,找其中的一对点,使得在n个点的所有点对中,该点对的距离最小;
算法:
1.将平面上的点集S按x坐标排序后,若只有1个点,则返回;若有两个点,则直接计算两点距离为最近距离;若有三个点,则两两计算出距离,得到最近距离。
2.若大于三个点,则将其线性分割成大小大致相等的2个子集S1,S2。
3.最近点对只会出现在以下三种情况中:①点对在子集S1中;②点对在子集S2中;③一个点在S1中,另一个点在S3中。
4.递归地在S1,S2上解最近点对问题,分别得到S1,S2中的最小距离d1,d2,取d1,d2中的最小距离d和点对。再找出跨越S1,S2的最近点对:合并S1,S2找到点集中x坐标在区间[mid-d,mid+d]范围内的所有点。
5.按y坐标不减排序,循环每个点,找它后面7个点的最小距离,与d比较,比d小则更新d。最后即求得最近点对距离
代码:
#include<bits/stdc++.h>
using namespace std;
struct point
{
float x,y;
}p[100005],temp[100005];
//x轴排序
bool cmpx(point a,point b)
{
return a.x<b.x;
}
//y轴排序
bool cmpy(point a,point b)
{
return a.y<b.y;
}
//两点之间的距离
float dis(point a,point b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
float closest(int low,int hight)
{
if(low+1==hight)return dis(p[low],p[hight]);//只有两个点
if(low+2==hight)return min(dis(p[low],p[low+1]),min(dis(p[low+1],p[hight]),dis(p[low],p[hight])));//只有三个点
int mid=(low+hight)/2;
//s1,s2集合的最短对距离d1,d2中最小的那个d;
float d=min(closest(low,mid),closest(mid+1,hight));
int k=0;
//将集合中的点的x坐标位于[p[mid].x-d,p[mid].x+d]放入temp中
for(int i=low;i<=hight;i++)
{
if(p[i].x>=p[mid].x-d&&p[i].x<=p[mid].x+d)
temp[k++]=p[i];
}
//对y坐标排序
sort(temp,temp+k,cmpy);
//循环每个点,找它后面7个点的最小距离,与d比较,比d小则更新d
for(int i=0;i<k;i++)
{
int h=(i+7)<k?(i+7):k;
for(int j=i+1;j<h;j++)
{
if(temp[j].y-temp[i].y>=d)break;
d=min(dis(temp[i],temp[j]),d);
}
}
return d;
}
int main()
{
int t;
cin>>t;
while(t--)
{
int n;
cin>>n;
for(int i=0;i<n;i++)
cin>>p[i].x>>p[i].y;
sort(p,p+n,cmpx);
printf("%.4lf\n",closest(0,n-1));
}
}