文章目录
矩阵快速幂
使用场景
一个问题可转化为求解一个矩阵的n次方的形式;
一个递推形式:
爬楼梯问题
需求
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
案例
输入:n = 2 输出:2 分析两种情况:1+1 ;2
输入:n = 3 输出:3 分析三种情况:1+1 +1;1+ 2 ; 2+1
矩阵快速幂
class Solution {
public int climbStairs(int n) {
// 矩阵快速幂
int[][] w = {{1,1},{1,0}};
// 结果矩阵
int[][] ret = pow(w,n);
return ret[0][0];
}
public int[][] pow(int[][] a,int n){
int[][] ret = {{1,0},{0,1}};
while(n > 0){
if((n & 1 ) == 1)
ret = multiply(ret,a);
n >>= 1;
a = multiply(a,a);
}
return ret;
}
public int[][] multiply(int[][] a,int[][] b){
int[][] c = {{0,0},{0,0}};
for(int i = 0; i < 2; i ++){
for(int j = 0 ; j < 2; j++){
c[i][j] = a[i][0]*b[0][j] + a[i][1]*b[1][j];
}
}
return c;
}
}
动态规划
栈和队列
栈解决常用方法
方法 | 说明 |
---|---|
boolean empty() | 测试此堆栈是否为空 |
E peek() | 查看堆栈顶部的对象,而不从堆栈中删除它 |
E pop() | 删除此堆栈顶部的对象,并将该对象作为此函数的值返回 |
E push(E item) | 将项目推送到此堆栈的顶部 |
int search(Object c) | 返回一个对象在此堆栈上的基于1的位置 |
LinkedList解决常用方法
offer09 用两个栈实现队列
需求
用两个栈实现一个队列。队列的声明如下,请实现它的两个函数 appendTail 和 deleteHead ,分别完成在队列尾部插入整数和在队列头部删除整数的功能。
(若队列中没有元素,deleteHead 操作返回 -1 )
案例
第一行: [“CQueue”,“appendTail”,“deleteHead”,“deleteHead”] 表示操作
CQueue 构造队列 appendTail 队尾入队 deleteHead 队头出队
第二行: [[],[3],[],[]] 表示入队的数字 (只有appendTail操作有对应值)
第三行输出:[null,null,3,-1]
构造队列和入队 返回 null;出队返回 数字 或者 -1;
两个stack实现
class CQueue {
//声明两个栈
Stack<Integer> A;
Stack<Integer> B;
public CQueue() {
// 给声明的两个栈赋值
A = new Stack<Integer>();
B = new Stack<Integer>();
}
public void appendTail(int value) {
A.push(value);
}
public int deleteHead() {
// 将A栈内容放入B栈中,A是数组尾部 操作
while(!A.empty())
B.push(A.pop());
// 将栈A的内容全部放入栈B中
// B是数组头部 操作
int result = B.empty()?-1:B.pop();
// 更新A栈内容
while(!B.empty())
A.push(B.pop());
return result;
}
}
/**
* Your CQueue object will be instantiated and called as such:
* CQueue obj = new CQueue();
* obj.appendTail(value);
* int param_2 = obj.deleteHead();
*/
使用LinkedList
class CQueue {
// 创建链表 LinkedList
LinkedList<Integer> llist;
public CQueue() {
llist = new LinkedList<Integer>();
}
public void appendTail(int value) {
// 队列的尾部插入元素
llist.addLast(value);
}
public int deleteHead() {
// 队列的头部删除元素
return llist.size() == 0 ? -1 : llist.removeFirst();
}
}
/**
* Your CQueue object will be instantiated and called as such:
* CQueue obj = new CQueue();
* obj.appendTail(value);
* int param_2 = obj.deleteHead();
*/
offer30 包含min函数的栈
需求
定义栈的数据结构,请在该类型中实现一个能够得到栈的最小元素的 min 函数在该栈中,调用 min、push 及 pop 的时间复杂度都是 O(1)。
分析
要求min、push 及 pop 的时间复杂度都是 O(1)。
那么不能在min方法中实施遍历,必须在push和pop的时候处理。
示例
MinStack minStack = new MinStack();
minStack.push(-2);
minStack.push(0);
minStack.push(-3);
minStack.min(); --> 返回 -3.
minStack.pop();
minStack.top(); --> 返回 0.
minStack.min(); --> 返回 -2.
LinkedList方式
class MinStack {
// 使用链表
// 存储正常插入的元素
LinkedList<Integer> A;
// 用于保存最小值
int min = Integer.MAX_VALUE;
// 用于存储元素 从小到大的顺序
LinkedList<Integer> Min;
/** initialize your data structure here. */
public MinStack() {
// 创建两个链表
A = new LinkedList<Integer>();
Min = new LinkedList<Integer>();
}
// 链表中插入元素
public void push(int x) {
// 新元素放在链表的尾部
A.addLast(x);
// 新元素放入有序链表。(非严格有序)
if(x <= min){
min = x;
Min.addFirst(min);
}
else{
Min.addLast(x);
}
}
// 删除链表最后一个添加的元素。
public void pop() {
int a = A.removeLast();
while(a == min){
Min.removeFirst();
min = Min.getFirst();
}
}
// 返回链表最后一个元素。
public int top() {
return A.getLast();
}
// 返回当前链表中最小的元素。
public int min() {
return min;
}
}
/**
* Your MinStack object will be instantiated and called as such:
* MinStack obj = new MinStack();
* obj.push(x);
* obj.pop();
* int param_3 = obj.top();
* int param_4 = obj.min();
*/
Stack实现
class MinStack {
// 使用stack实现。
Stack<Integer> A,B;
/** initialize your data structure here. */
public MinStack() {
A = new Stack<Integer>();
B = new Stack<Integer>();
}
public void push(int x) {
A.push(x);
// 刚开始B肯定是空的,则! B.empty()为假 走的是else。
if(! B.empty() && B.peek() <= x){
// B栈添加的是 栈顶元素 栈顶元素小于要添加的元素
B.push(B.peek());
}else{
B.push(x);
}
}
// 栈出栈
public void pop() {
A.pop();
B.pop();
}
// 查看栈顶的元素
public int top() {
return A.peek();
}
// 查看栈中的最小值。
public int min() {
return B.peek();
}
}
/**
* Your MinStack object will be instantiated and called as such:
* MinStack obj = new MinStack();
* obj.push(x);
* obj.pop();
* int param_3 = obj.top();
* int param_4 = obj.min();
*/