题目描述
矩阵乘法是线性代数中最基础的一个知识点,设矩阵A为一个n行m列的矩阵,矩阵B为x行y列,那么A能乘B的条件为m=x,它们相乘将得到一个n行y列的矩阵,进行一次矩阵乘法的运算次数为n×m×y,现在给出k个矩阵,你每次可以合并相邻的两个矩阵,将它们做乘法得出的矩阵作为合并的结果,请问如何合并能使得总的运算次数最少
输入描述
第一行一个数k(k<=100)
接下来k行,每行两个正整数表示该矩阵的行和列(每个数<=50)
输出描述
一个整数表示最少的合并代价
样例
输入
3 1 5 5 20 20 1
输出
105
AC代码
#include<bits/stdc++.h>
using namespace std;
const int N=108;
int n;
int a[N][N],dp[N][N];
int main(){
cin>>n;
for(int i=1;i<=n;i++){
for(int j=1;j<=2;j++){
cin>>a[i][j];
}
}
for(int len=2;len<=n;len++){
for(int i=1;i+len-1<=n;i++){
int j=i+len-1;
dp[i][j]=0x3f3f3f3f;
for(int k=i;k<=j-1;k++){
dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j]+a[i][1]*a[k][2]*a[j][2]);
}
}
}
cout<<dp[1][n];
return 0;
}