POJ--2553 图的底部

题目描述

在这里插入图片描述

输入样例
3 3
1 3 2 3 3 1
2 1
1 2
0
输出样例
1 3
2
思路

G中任意两个点都可到达,则G是图的一个强连通分量.sink点就是强连通分量中的点.题目要求是输出sink点.
所以我们应该先通过Tarjan算法找到强连通分量,然后缩点,统计每个(缩点)的出度,最后缩点出度为1的那些点就是我们要求的sink点.

在这里插入图片描述

算法设计

在这里插入图片描述

参考代码
#include<iostream>
#include<stack>
#include<string.h>
using namespace std;
const int maxn = 5000+10;
int n,m;
int head[maxn],num,ins[maxn],low[maxn],dfn[maxn],cnt,belong[maxn],id,degree[maxn];//ins:标记是否在 stack中 
stack<int> s;
struct Edge{
	int to,next; 
}e[maxn*maxn]; 

void add(int u,int v){
	e[++num].next = head[u];
	e[num].to = v;
	head[u] = num;
}

void tarjan(int u){
	low[u] = dfn[u] = ++cnt;
	ins[u] = 1;
	s.push(u);
	for(int i = head[u]; i ; i = e[i].next){
		int v = e[i].to;
		if(!dfn[v]){
			tarjan(v);
			low[u] = min(low[u],low[v]);
		}else if(ins[v]){
			low[u] = min(low[u],low[v]);
		}
	}
	if(low[u]==dfn[u]){//缩点 
		int v;
		do{
			v = s.top();
			s.pop();
			belong[v] = id;
			ins[v] = 0; 
		}while(u!=v);
		id++;
	}
}

void init()
{
	memset(head,0,sizeof(head));
	memset(ins,0,sizeof(ins));
	memset(low,0,sizeof(low));
	memset(dfn,0,sizeof(dfn));
	memset(belong,0,sizeof(belong));
	memset(degree,0,sizeof(degree));
	num = cnt =0;
	id  = 1;
}


void solveDegree(){//求出度
	for(int u = 1; u <= n; u++){
		for(int i = head[u]; i; i = e[i].next){
			int v = e[i].to;
			if(belong[u]!=belong[v]){//如果u和v的连通分量号不同 
				degree[belong[u]]++;//u节点所在的连通分量号的出度++ 
			}
		}
	}
}

void print(){//输出  
	int flag = 1; 
	for(int i = 1;i <= n; i++){
		if(!degree[belong[i]]){//如果出度为0则说明是连通分量
			if(flag){//第一个数据前没有空格 
				flag = 0;
			}else{
				cout<<" ";
			}
			cout<<i;
		}
	}
	cout<<endl; 
} 

int main(){
	int u,v;
	while(cin>>n&&n){
		cin>>m;
		while(m--){
			cin>>u>>v;
			add(u,v);
		}
		for(int i = 1; i <= n; i++){
			if(!dfn[i]){
				tarjan(i);
			}
		}
		solveDegree();
		print();
		init();
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱编程的大李子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值