最短路径——Bellman-Ford算法以及SPFA算法

Dijkstra算法虽然好,但是它不能解决带有负权边(边的权值为负数)的图。接下来
介绍一个无论是思想上还是代码实现上都堪称完美的最短路算法:Bellman-Ford。
Bellman-Ford算法非常简单,核心代码只有4行,并且可以完美地解决带有负权边的图.

思路 : 一张有向图,有n个点,m条边,用dis[]数组保存源点到各点的最短距离,可以通过对边进行n-1次的遍历,当其满足dis[v]>dis[u]+w的时候,就对其进行松弛更新,重复n-1次以后就能得到答案,如果n-1次以后还能继续更新,则可以判断图中出现了负权环,思路非常简短。

举例验算:
1.例图和边输入的顺序如下,并对dis数组进行初始化
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
另外实现这个算法的数据结构是边集数组.因为我们需要存储起始点,终点,权值.从而对每条边进行松弛.

参考代码
#include<iostream>
#include<queue> 
using namespace std;
const int maxn = 1000;
const int INF = 0x3f3f3f3f;
int u[maxn],v[maxn],w[maxn],dis[maxn],flag;//dis:从起始点到当前点的最短路径    
int n,m,x;//n:顶点数  m:边数  x:起始点  

void Ford(int s){
	for(int i = 1; i <= n; i++){//dis数组进行初始化 
		dis[i] = INF;
	} 
	dis[s] = 0;
	for(int i = 0; i < n-1;i++){//
		flag = 0;//flag:用于标记此次是否所有边是否进行松弛了.
		for(int j = 0; j < m; j++){
			if(dis[v[j]]>=dis[u[j]]+w[j]){
				dis[v[j]] = dis[u[j]]+w[j];
				flag = 1;
			}
		} 
		if(!flag){//如果 这次没有进行松弛,说明所有的点 都已松弛完毕. 
			break;
		}
	} 
	
}
int main()
{
	cin>>n>>m>>x;
	for(int i = 0; i<m; i++) {
		cin>>u[i]>>v[i]>>w[i];
	}
	Ford(x);
	for(int i = 1; i <= n; i++){
		cout<<dis[i]<<"\t";
	}
	
	cout<<endl;	
	return 0;
}

运行结果:
在这里插入图片描述

Ford算法还可以去检测一个图是否有负权回路,如果在进行n-1轮松弛后,仍然存在:

if(dis[v[i]] >  dis[u[i]] + w[i])
	dis[v[i]] = dis[u[i]] + w[i];

则说明存在负环回路.

SPFA算法

思路: SPFA算法就是用队列优化过的Bellman-Ford算法,初始时将源点加入队列。每次选出队首结点,对其的所有出边进行松弛更新,更新成功的点加入队列,同一个结点可能被多次更新,但是同一个结点只能在同时在队列中出现一个,重复这个操作直到队列为空.

参考代码
#include<iostream>
#include<queue>
using namespace std;
const int maxn = 100;
const int INF = 0x3f3f3f3f;
int n,m,s,c,num;
int head[maxn],dis[maxn],vis[maxn];//vis:标记节点是否在队列中 
struct node{
	int next,to,w;
}e[maxn*maxn]; 

void add(int u,int v,int cc){
	e[++num].next = head[u];
	e[num].to = v;
	e[num].w = cc;
	head[u] = num;
}

void spfa(int u){
	for(int i = 1; i <= n; i++){//dis进行初始化. 
		dis[i] = INF;
	}
	queue<int> q;
	q.push(u);
	vis[u] = 1;
	dis[u] = 0;
	while(!q.empty()){
		int x = q.front();
		q.pop();//怕最后忘记弹出,直接在这里处理吧.. 
		vis[x] = 0;
		for(int i = head[x]; i; i=e[i].next){
			if(dis[e[i].to] > dis[x]+e[i].w){//如果该边可以松弛 
				dis[e[i].to] = dis[x]+e[i].w;//dis更新 
				if(!vis[e[i].to]) {
					q.push(e[i].to);
					vis[e[i].to] = 1;
				}
			}	
		}
	}

	
} 
int main()
{
	int u,v,w;
	cin>>n>>m>>s;
	for(int i = 0; i < m; i++){
		cin>>u>>v>>w;
		add(u,v,w);
	} 
	spfa(s);
	for(int i = 1; i<=n;i++){
		cout<<dis[i]<<"\t";
	}
	cout<<endl;
	return 0;	
 } 

/*
5 7 1
1 2 2
1 5 10
2 3 3
2 5 7
3 4 4
4 5 5
5 3 6
*/
 

运行结果:
在这里插入图片描述

最短路径算法分析

在这里插入图片描述
对于判断正环或者负环的问题,我们可以使用Ford,SPFA,或者DFS(判断能否回到曾经搜过的点).

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱编程的大李子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值