糖果传递
2000ms
262144KB
老师准备了一堆糖果
,
恰好
n
个小朋友可以分到数目一样多的糖果
.
老师要
n
个小朋友去拿糖果
,
然后围着圆桌坐好
,
第
1
个小朋友的左边是第
n
个小朋友
,
其他第
i
个小朋友左边是第
i-1
个小朋友
.
大家坐好后
,
老师发现
,
有些小朋友抢了很多的糖果
,
有的小朋友只得到了一点点糖果
,
甚至一颗也没有
L
,
设第
i
个小朋友有
ai
颗糖果
.
小朋友们可以选择将一些糖果给他左边的或者右边的小朋友
,
通过
”
糖果传递
”
最后使得每个小朋友得到的糖果数是一样多的
,
假设一颗糖果从一个小朋友传给另一个小朋友的代价是
1,
问怎样传递使得所耗的总代价最小
.
Input
输入文件第一行一个正整数
n,
表示小朋友的个数
.
接下来
n
行
,
每行一个整数
ai,
表示第
i
个小朋友得到的糖果的颗数
.
n<=1000000.
ai>=0,
保证
ai
在
longint/int
范围内
, ai
的总和在
int64/long long
范围内
.
Output
输出只有一个数
,
表示最小代价
.
Sample Input
4 1 2 5 4
Sample Output
4
这是昨天周赛的一道题,当时没有做出来,不过我认为这确实是一道好题。
这道题目看起来很复杂,仔细分析一下并不是太难。 首先,最终每个小朋友的糖果数量可以计算出来,等于糖果总数除以n,用ave表示。
假设标号为i的小朋友开始有Ai颗糖果,Xi表示第i个小朋友给了第i-1个小朋友Xi颗糖果,如果Xi<0,说明第i-1个小朋友给了第i个小朋友Xi颗糖果,X1表示第一个小朋友给第n个小朋友的糖果数量。 所以最后的答案就是ans=|X1| + |X2| + |X3| + ……+ |Xn|。
对于第一个小朋友,他给了第n个小朋友X1颗糖果,还剩A1-X1颗糖果;但因为第2个小朋友给了他X2颗糖果,所以最后还剩A1-X1+X2颗糖果。根据题意,最后的糖果数量等于ave,即得到了一个方程:A1-X1+X2=ave。
同理,对于第2个小朋友,有A2-X2+X3=ave。最终,我们可以得到n个方程,一共有n个变量,但是因为从前n-1个方程可以推导出最后一个方程,所以实际上只有n-1个方程是有用的。
尽管无法直接解出答案,但可以用X1表示出其他的Xi,那么本题就变成了单变量的极值问题。
对于第1个小朋友,A1-X1+X2=ave -> X2=ave-A1+X1 = X1-C1(假设C1=A1-ave,下面类似)
对于第2个小朋友,A2-X2+X3=ave -> X3=ave-A2+X2=2ave-A1-A2-x2+X1=X1-C2
对于第3个小朋友,A3-X3+X4=ave -> X4=ave-A3+X3=3ave-A1-A2-A3+X1=X1-C3
……
对于第n个小朋友,An-Xn+X1=ave。
我们希望Xi的绝对值之和尽量小,即|X1| + |X1-C1| + |X1-C2| + ……+ |X1-Cn-1|要尽量小。注意到|X1-Ci|的几何意义是数轴上的点X1到Ci的距离,所以问题变成了:给定数轴上的n个点,找出一个到他们的距离之和尽量小的点,而这个点就是这些数中的中位数,具体证明在此省略,请自己证明。
#include<stdio.h>
#include<algorithm>
using namespace std;
typedef long long LL;
const int N = 1000000 + 10;
int a[N], c[N];
int main()
{
int n, i;
while(~scanf("%d",&n))
{
LL sum = 0;
for(i = 1; i <= n; i++)
{
scanf("%d",&a[i]);
sum += (long long)a[i];
}
LL ave = sum / n;
c[1] = 0;
for(i = 2; i <= n; i++)
c[i] = c[i-1] + a[i] - ave;
sort(c+1,c+n+1);
LL ans = 0;
int mid = c[n/2+1]; //中位数
for(i = 1; i <= n; i++)
ans += abs(c[i] - mid); //距离和
printf("%lld\n",ans);
}
return 0;
}