糖果传递 (数学题)

糖果传递

2000ms    262144KB

  老师准备了一堆糖果 恰好 n 个小朋友可以分到数目一样多的糖果 老师要 n 个小朋友去拿糖果 然后围着圆桌坐好 1 个小朋友的左边是第 n 个小朋友 其他第 i 个小朋友左边是第 i-1 个小朋友 大家坐好后 老师发现 有些小朋友抢了很多的糖果 有的小朋友只得到了一点点糖果 甚至一颗也没有 L 设第 i 个小朋友有 ai 颗糖果 小朋友们可以选择将一些糖果给他左边的或者右边的小朋友 通过 糖果传递 最后使得每个小朋友得到的糖果数是一样多的 假设一颗糖果从一个小朋友传给另一个小朋友的代价是 1,  问怎样传递使得所耗的总代价最小 .

Input

输入文件第一行一个正整数 n, 表示小朋友的个数 .
接下来 n , 每行一个整数 ai, 表示第 i 个小朋友得到的糖果的颗数 .
n<=1000000.
ai>=0,  保证 ai longint/int 范围内 , ai 的总和在 int64/long long 范围内 .

Output

输出只有一个数 表示最小代价 .

Sample Input

4
1
2
5
4

Sample Output

4

这是昨天周赛的一道题,当时没有做出来,不过我认为这确实是一道好题。

这道题目看起来很复杂,仔细分析一下并不是太难。 首先,最终每个小朋友的糖果数量可以计算出来,等于糖果总数除以n,用ave表示。
假设标号为i的小朋友开始有Ai颗糖果,Xi表示第i个小朋友给了第i-1个小朋友Xi颗糖果,如果Xi<0,说明第i-1个小朋友给了第i个小朋友Xi颗糖果,X1表示第一个小朋友给第n个小朋友的糖果数量。 所以最后的答案就是ans=|X1| + |X2| + |X3| + ……+ |Xn|。
对于第一个小朋友,他给了第n个小朋友X1颗糖果,还剩A1-X1颗糖果;但因为第2个小朋友给了他X2颗糖果,所以最后还剩A1-X1+X2颗糖果。根据题意,最后的糖果数量等于ave,即得到了一个方程:A1-X1+X2=ave。
同理,对于第2个小朋友,有A2-X2+X3=ave。最终,我们可以得到n个方程,一共有n个变量,但是因为从前n-1个方程可以推导出最后一个方程,所以实际上只有n-1个方程是有用的。
尽管无法直接解出答案,但可以用X1表示出其他的Xi,那么本题就变成了单变量的极值问题。
对于第1个小朋友,A1-X1+X2=ave  ->  X2=ave-A1+X1 = X1-C1(假设C1=A1-ave,下面类似)
对于第2个小朋友,A2-X2+X3=ave  ->  X3=ave-A2+X2=2ave-A1-A2-x2+X1=X1-C2
对于第3个小朋友,A3-X3+X4=ave  ->  X4=ave-A3+X3=3ave-A1-A2-A3+X1=X1-C3
……
对于第n个小朋友,An-Xn+X1=ave。
  我们希望Xi的绝对值之和尽量小,即|X1| + |X1-C1| + |X1-C2| + ……+ |X1-Cn-1|要尽量小。注意到|X1-Ci|的几何意义是数轴上的点X1到Ci的距离,所以问题变成了:给定数轴上的n个点,找出一个到他们的距离之和尽量小的点,而这个点就是这些数中的中位数,具体证明在此省略,请自己证明。

#include<stdio.h>
#include<algorithm>
using namespace std;
typedef long long LL;
const int N = 1000000 + 10;
int a[N], c[N];
int main()
{
    int n, i;
    while(~scanf("%d",&n))
    {
        LL sum = 0;
        for(i = 1; i <= n; i++)
        {
            scanf("%d",&a[i]);
            sum += (long long)a[i];
        }
        LL ave = sum / n;
        c[1] = 0;
        for(i = 2; i <= n; i++)
            c[i] = c[i-1] + a[i] - ave; 
        sort(c+1,c+n+1);
        LL ans = 0;
        int mid = c[n/2+1];  //中位数
        for(i = 1; i <= n; i++)
            ans += abs(c[i] - mid);  //距离和
        printf("%lld\n",ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值