敌兵布阵
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Problem Description
C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了。A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任务就是要监视这些工兵营地的活动情况。由于采取了某种先进的监测手段,所以每个工兵营地的人数C国都掌握的一清二楚,每个工兵营地的人数都有可能发生变动,可能增加或减少若干人手,但这些都逃不过C国的监视。
中央情报局要研究敌人究竟演习什么战术,所以Tidy要随时向Derek汇报某一段连续的工兵营地一共有多少人,例如Derek问:“Tidy,马上汇报第3个营地到第10个营地共有多少人!”Tidy就要马上开始计算这一段的总人数并汇报。但敌兵营地的人数经常变动,而Derek每次询问的段都不一样,所以Tidy不得不每次都一个一个营地的去数,很快就精疲力尽了,Derek对Tidy的计算速度越来越不满:"你个死肥仔,算得这么慢,我炒你鱿鱼!”Tidy想:“你自己来算算看,这可真是一项累人的工作!我恨不得你炒我鱿鱼呢!”无奈之下,Tidy只好打电话向计算机专家Windbreaker求救,Windbreaker说:“死肥仔,叫你平时做多点acm题和看多点算法书,现在尝到苦果了吧!”Tidy说:"我知错了。。。"但Windbreaker已经挂掉电话了。Tidy很苦恼,这么算他真的会崩溃的,聪明的读者,你能写个程序帮他完成这项工作吗?不过如果你的程序效率不够高的话,Tidy还是会受到Derek的责骂的.
中央情报局要研究敌人究竟演习什么战术,所以Tidy要随时向Derek汇报某一段连续的工兵营地一共有多少人,例如Derek问:“Tidy,马上汇报第3个营地到第10个营地共有多少人!”Tidy就要马上开始计算这一段的总人数并汇报。但敌兵营地的人数经常变动,而Derek每次询问的段都不一样,所以Tidy不得不每次都一个一个营地的去数,很快就精疲力尽了,Derek对Tidy的计算速度越来越不满:"你个死肥仔,算得这么慢,我炒你鱿鱼!”Tidy想:“你自己来算算看,这可真是一项累人的工作!我恨不得你炒我鱿鱼呢!”无奈之下,Tidy只好打电话向计算机专家Windbreaker求救,Windbreaker说:“死肥仔,叫你平时做多点acm题和看多点算法书,现在尝到苦果了吧!”Tidy说:"我知错了。。。"但Windbreaker已经挂掉电话了。Tidy很苦恼,这么算他真的会崩溃的,聪明的读者,你能写个程序帮他完成这项工作吗?不过如果你的程序效率不够高的话,Tidy还是会受到Derek的责骂的.
Input
第一行一个整数T,表示有T组数据。
每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1<=ai<=50)。
接下来每行有一条命令,命令有4种形式:
(1) Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30)
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30);
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数;
(4)End 表示结束,这条命令在每组数据最后出现;
每组数据最多有40000条命令
每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1<=ai<=50)。
接下来每行有一条命令,命令有4种形式:
(1) Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30)
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30);
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数;
(4)End 表示结束,这条命令在每组数据最后出现;
每组数据最多有40000条命令
Output
对第i组数据,首先输出“Case i:”和回车,
对于每个Query询问,输出一个整数并回车,表示询问的段中的总人数,这个数保持在int以内。
对于每个Query询问,输出一个整数并回车,表示询问的段中的总人数,这个数保持在int以内。
Sample Input
1 10 1 2 3 4 5 6 7 8 9 10 Query 1 3 Add 3 6 Query 2 7 Sub 10 2 Add 6 3 Query 3 10 End
Sample Output
Case 1: 6 33 59
题目比较简单,就涉及到线段树的一些基本操作,不再多说什么。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<string>
#include<algorithm>
using namespace std;
#define lson l, mid, root<<1
#define rson mid+1, r, root<<1|1
const int N = 50000 + 20;
struct node
{
int l, r, sum;
} a[N<<2];
void PushUp(int root) //把当前节点的信息更新到父节点
{
a[root].sum = a[root<<1].sum + a[root<<1|1].sum;
}
void build_tree(int l, int r, int root)
{
a[root].l = l;
a[root].r = r;
if(l == r)
{
scanf("%d",&a[root].sum);
return ;
}
int mid = (l + r) >> 1;
build_tree(lson);
build_tree(rson);
PushUp(root);
}
void update(int l, int r, int root, int k)
{
if(l == a[root].l && r == a[root].r)
{
a[root].sum += k;
return ;
}
int mid = (a[root].l + a[root].r) >> 1;
if(r <= mid) update(l, r, root<<1, k);
else if(l > mid) update(l, r, root<<1|1, k);
else
{
update(lson, k);
update(rson, k);
}
PushUp(root);
}
int Query(int l, int r, int root)
{
if(l == a[root].l && r == a[root].r)
return a[root].sum;
int mid = (a[root].l + a[root].r) >> 1;
int ans = 0;
if(r <= mid) ans += Query(l, r, root<<1);
else if(l > mid) ans += Query(l, r, root<<1|1);
else
ans += Query(lson) + Query(rson);
return ans;
}
int main()
{
int T, n, l, r, cas = 0;
string op;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
build_tree(1, n, 1);
printf("Case %d:\n", ++cas);
while(cin >> op)
{
if(op == "End")
break;
if(op == "Query")
{
scanf("%d%d",&l,&r);
printf("%d\n", Query(l, r, 1));
}
else if(op == "Add")
{
scanf("%d%d",&l, &r);
update(l, l, 1, r);
}
else if(op == "Sub")
{
scanf("%d%d",&l,&r);
update(l, l, 1, -r);
}
}
}
return 0;
}