目录
考点2、中缀表达式转后缀表达式(通过后缀表达式(逆波兰表达式)计算表达式结果)
对栈的基本了解
栈所遵循的原则:先进后出
动态图演示:
考点1、不可能的出栈序列
例:
若进栈序列为 1,2,3,4 ,进栈过程中可以出栈,则下列不可能的一个出栈序列是(C)。
A: 1,4,3,2 B: 2,3,4,1 C: 3,1,4,2 D: 3,4,2,1
注:
这类型的题,往往题目会省略一个条件:在入栈的同时也可以出栈,例如上题,先将1入栈,同时又将1出栈,然后再将2入栈
牛客:栈的压入、弹出序列
题目:
输入两个整数序列,第一个序列表示栈的压入顺序,请判断第二个序列是否可能为该栈的弹出顺序。假设压入栈的所有数字均不相等。例如序列1,2,3,4,5是某栈的压入顺序,序列4,5,3,2,1是该压栈序列对应的一个弹出序列,但4,3,5,1,2就不可能是该压栈序列的弹出序列。
1. 0<=pushV.length == popV.length <=1000
2. -1000<=pushV[i]<=1000
3. pushV 的所有数字均不相同
代码:
import java.util.*;
import java.util.ArrayList;
public class Solution {
public boolean IsPopOrder(int [] pushA,int [] popA) {
if(pushA.length==0||popA.length==0) {
return false;
}
Stack<Integer> stack=new Stack<>();
int j=0;
for(int i=0;i<pushA.length;i++) {
stack.push(pushA[i]);
while(j<popA.length&&!stack.empty()
&&stack.peek().equals(popA[j])) {
stack.pop();
j++;
}
}
return stack.empty();
}
}
考点2、中缀表达式转后缀表达式(通过后缀表达式(逆波兰表达式)计算表达式结果)
如何将中缀表达式转换成后缀表达式?
三步搞定:
- 按运算符优先级对所有运算符和它的运算数加括号
- 把运算符移到对应的括号后面
- 去掉括号
实例:
注:前缀表达式其实就是将运算符提到括号前面,其他都一样的
计算演示图:
LeetCode:逆波兰表达式求值
题目:
根据 逆波兰表示法,求表达式的值。
有效的算符包括 +、-、*、/ 。每个运算对象可以是整数,也可以是另一个逆波兰表达式。
注意 两个整数之间的除法只保留整数部分。
可以保证给定的逆波兰表达式总是有效的。换句话说,表达式总会得出有效数值且不存在除数为 0 的情况。
代码:
class Solution {
public int evalRPN(String[] tokens) {
Stack<Integer> stack= new Stack<>();
for(String x:tokens) {
//不是加减乘除
if(!isOperation(x)) {
stack.push(Integer.parseInt(x));
} else {
int num2=stack.pop();
int num1=stack.pop();
switch(x) {
case "+":
stack.push(num1+num2);
break;
case "-":
stack.push(num1-num2);
break;
case "*":
stack.push(num1*num2);
break;
case "/":
stack.push(num1/num2);
break;
}
}
}
return stack.pop();
}
private boolean isOperation(String opera) {
if(opera.equals("+")||opera.equals("-")||opera.equals("*")||opera.equals("/")) {
return true;
}
return false;
}
}
LeetCode——有效的括号
题目:
给定一个只包括 '(',')','{','}','[',']' 的字符串 s ,判断字符串是否有效。
有效字符串需满足:
左括号必须用相同类型的右括号闭合。
左括号必须以正确的顺序闭合。
模拟栈求解
import java.util.Stack;
class Solution {
public boolean isValid(String s) {
Stack<Character> stack=new Stack<>();
for(int i=0;i<s.length();i++) {
char ch=s.charAt(i);
if(ch=='{'||ch=='['||ch=='(') {
stack.push(ch);
} else {
//右括号
//判断栈是否空
if(stack.empty() ) {
return false;
}
char top=stack.peek();
if(ch=='}'&&top=='{'||ch==']'&&top=='['||ch==')'&&top=='(') {
stack.pop();//当前匹配
} else {
//左右括号不匹配
return false;
}
}
}
if(stack.empty()) {
return true;
} else {
//括号多
return false;
}
}
}