【贪心算法】BM95 --- 分糖果问题(超容易理解的思路)

目录

题目:

【知识点】贪心思想

思路:

具体做法:

动态图解更容易理解哦!!! 

 代码如下:


题目:

一群孩子做游戏,现在请你根据游戏得分来发糖果,要求如下:

1. 每个孩子不管得分多少,起码分到一个糖果。

2. 任意两个相邻的孩子之间,得分较多的孩子必须拿多一些糖果。(若相同则无此限制)

给定一个数组 arrarr 代表得分数组,请返回最少需要多少糖果。

要求: 时间复杂度为 O(n)O(n) 空间复杂度为 O(n)O(n)

数据范围: 1 \le n \le 1000001≤n≤100000 ,1 \le a_i \le 10001≤ai​≤1000

【知识点】贪心思想

        贪心思想属于动态规划思想中的一种,其基本原理是找出整体当中给的每个局部子结构的最优解,并且最终将所有的这些局部最优解结合起来形成整体上的一个最优解。

思路:

        要想分出最少的糖果,利用贪心思想,肯定是相邻位置没有增加的情况下,大家都分到1,相邻位置有增加的情况下,分到糖果数加1就好。什么情况下会增加糖果,相邻位置有得分差异,可能是递增可能是递减,如果是递增的话,糖果依次加1,如果是递减糖果依次减1?这不符合最小,因为减到最后一个递减的位置可能不是1,必须从1开始加才是最小,那我们可以从最后一个递减的位置往前反向加1.

具体做法:

  1. 使用一个辅助数组记录每个位置的孩子分到的糖果,全部初始化为1.
  2. 从左到右遍历数组,如果右边元素比相邻左边元素大,意味着在递增,糖果数就是前一个加1,否则保持1不变。
  3. 从右到左遍历数组,如果左边元素比相邻右边元素大, 意味着在原数组中是递减部分,如果左边在上一轮中分到的糖果数更小,则更新为右边的糖果数+1,否则保持不变。
  4. 将辅助数组中的元素累加求和。

动态图解更容易理解哦!!! 


 代码如下:

import java.util.*;


public class Solution {
    /**
     * pick candy
     * @param arr int整型一维数组 the array
     * @return int整型
     */
    public int candy (int[] arr) {
        // write code here
        if(arr==null||arr.length==0) {
            return 0;
        }
        int n = arr.length;
        int[] nums = new int[n];
        for(int i = 0;i<n;i++) {
            nums[i]=1;
        }
        //第一次遍历,从前往后
        for(int i = 1;i<n;i++) {
            if(arr[i]>arr[i-1]) {
                nums[i]=nums[i-1]+1;
            }
        }
        //第二次遍历,倒着来
        for(int i = n-1;i>0;i--) {
            if (arr[i - 1] > arr[i]){
                nums[i - 1] = nums[i-1] < nums[i] + 1 ? nums[i] + 1 : nums[i-1];
            }
        }
        int sum = 0;
        //求和
        for(int i = 0;i<n;i++) {
            sum+=nums[i];
        }
        return sum;
    }


}

 下期见!!!

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

龙洋静

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值