4. Median of Two Sorted Arrays - LeetCode

Median of Two Sorted Arrays(数组)

求两个有序数组的中位数,而且限制时间复杂度为O(log (m+n)),看到这个时间复杂度,自然而然想到使用二分查找来求解。但是这道题被定义为Hard,难在要在两个未合并的有序数组之间使用二分法,如果这道题只有一个有序数组求中位数的话就是个Easy题。
在这里插入图片描述
考虑将两个有序数组混合起来成为一个有序数组求解,在这个时间复杂度限制显然行不通。那么我们还是要用二分法,而且是在两个数组之间使用。
回顾一下中位数的定义,如果某个有序数组长度是奇数,那么其中位数就是最中间那个;如果是偶数,那么就是最中间两个数字的平均值。对于两个有序数组也是一样的,假设两个有序数组的长度分别为m和n,由于两个数组长度之和 m+n 的奇偶不确定,因此需要分情况来讨论。对于奇数的情况,直接找到最中间的数即可,对于偶数的情况需要求最中间两个数的平均值。
为了简化代码,不分情况讨论,使用一个小trick,分别找第 (m+n+1) / 2 个,和 (m+n+2) / 2 个,然后求其平均值即可,这对奇偶数均适用。假如 m+n 为奇数,那么其实 (m+n+1) / 2 和 (m+n+2) / 2 的值相等,相当于两个相同的数字相加再除以2,还是其本身。

定义一个函数在两个有序数组中找到第K个元素。首先,为了避免产生新的数组增加时间复杂度,我们使用两个变量i和j分别来标记数组nums1和nums2的起始位置。然后来处理一些corner cases,比如当某一个数组的起始位置大于等于其数组长度时,说明其所有数字均已被淘汰,相当于一个空数组,那么实际上就变成在另一个数组中找数字,直接就可以找出来了。还有如果K=1,那么只要比较nums1和nums2的起始位置i和j上的数字就可以了。
难点就在于一般的情况怎么处理?因为我们需要在两个有序数组中找到第K个元素,为了加快搜索的速度,我们要使用二分法。对K二分,意思是需要分别在nums1和nums2中查找第K/2个元素。注意这里由于两个数组的长度不定,所以有可能某个数组没有第K/2个数字,所以需要先check一下数组中到底存不存在第K/2个数字,如果存在就取出来,否则就赋值一个整型最大值。如果某个数组没有第K/2个数字,就淘汰另一个数字的前K/2个数字即可。有没有可能两个数组都不存在第K/2个数字呢,这道题里是不可能的,因为K不是任意给的,而是给的m+n的中间值,所以必定至少会有一个数组是存在第K/2个数字的。
最后就是二分法的核心,比较这两个数组的第K/2个数字midVal1和midVal2的大小,如果第一个数组的第K/2个数字小的话,那么说明要找的数字肯定不在nums1中的前K/2个数字,所以可以将其淘汰,将nums1的起始位置向后移动K/2,并且此时的K也自减去K/2,调用递归。反之,淘汰nums2中的前K/2个数字,并将nums2的起始位置向后移动K/2,并且此时的K也自减去K/2,调用递归即可,C++版本代码如下:

class Solution {
public:
    double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
        int m = nums1.size(), n = nums2.size(), left = (m + n + 1) / 2, right = (m + n + 2) / 2;
        return (findKth(nums1, 0, nums2, 0, left) + findKth(nums1, 0, nums2, 0, right)) / 2.0;
    }
    int findKth(vector<int>& nums1, int i, vector<int>& nums2, int j, int k) {
        if (i >= nums1.size()) return nums2[j + k - 1];
        if (j >= nums2.size()) return nums1[i + k - 1];
        if (k == 1) return min(nums1[i], nums2[j]);
        int midVal1 = (i + k / 2 - 1 < nums1.size()) ? nums1[i + k / 2 - 1] : INT_MAX;
        int midVal2 = (j + k / 2 - 1 < nums2.size()) ? nums2[j + k / 2 - 1] : INT_MAX;
        if (midVal1 < midVal2) {
            return findKth(nums1, i + k / 2, nums2, j, k - k / 2);
        } else {
            return findKth(nums1, i, nums2, j + k / 2, k - k / 2);
        }
    }
};

上面解法一直使用的是原数组,同时用了两个变量来分别标记当前的起始位置。我们也可以直接生成新的数组,这样就不要用起始位置变量,不过拷贝数组的操作可能会增加时间复杂度,也许会超出限制,就算当个思路拓展。
首先判断数组是否为空,为空的话直接在另一个数组找第K个即可。还有一种情况是当K = 1时,表示要找第一个元素,只要比较两个数组的第一个元素,返回较小的那个即可。
这里分别取出两个数组的第K/2个数字的位置坐标i和j,为了避免数组没有第K/2个数组的情况,每次都和数组长度做比较,取出较小值。这里跟上面解法有些许不同,上面解法直接取出的是值,而这里取出的是位置坐标,但是思想都是很类似的。不同在于,上面解法中每次固定淘汰K/2个数字,而这里由于取出了合法的i和j,所以每次淘汰i或j个。让 j = k-i,这样也是对的,收敛速度可能会更快一些,代码如下:

class Solution {
public:
    double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
        int m = nums1.size(), n = nums2.size();
        return (findKth(nums1, nums2, (m + n + 1) / 2) + findKth(nums1, nums2, (m + n + 2) / 2)) / 2.0;
    }
    int findKth(vector<int> nums1, vector<int> nums2, int k) {
        if (nums1.empty()) return nums2[k - 1];
        if (nums2.empty()) return nums1[k - 1];
        if (k == 1) return min(nums1[0], nums2[0]);
        int i = min((int)nums1.size(), k / 2), j = min((int)nums2.size(), k / 2);
        if (nums1[i - 1] > nums2[j - 1]) {
            return findKth(nums1, vector<int>(nums2.begin() + j, nums2.end()), k - j);
        } else {
            return findKth(vector<int>(nums1.begin() + i, nums1.end()), nums2, k - i);
        }
        return 0;
    }
};

此题还能用迭代形式的二分搜索法来解,代码如下:

class Solution {
public:
    double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
        int m = nums1.size(), n = nums2.size();
        if (m < n) return findMedianSortedArrays(nums2, nums1);
        if (n == 0) return ((double)nums1[(m - 1) / 2] + (double)nums1[m / 2]) / 2.0;
        int left = 0, right = n * 2;
        while (left <= right) {
            int mid2 = (left + right) / 2;
            int mid1 = m + n - mid2;
            double L1 = mid1 == 0 ? INT_MIN : nums1[(mid1 - 1) / 2];
            double L2 = mid2 == 0 ? INT_MIN : nums2[(mid2 - 1) / 2];
            double R1 = mid1 == m * 2 ? INT_MAX : nums1[mid1 / 2];
            double R2 = mid2 == n * 2 ? INT_MAX : nums2[mid2 / 2];
            if (L1 > R2) left = mid2 + 1;
            else if (L2 > R1) right = mid2 - 1;
            else return (max(L1, L2) + min(R1, R2)) / 2;
        }
        return -1;
    }
};

参考链接

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值