素数判定 - 九度教程第50题

博客探讨了如何判断一个数是否为素数,提供了一种时间复杂度为O(sqrt(n))的优化算法,只需测试到不大于sqrt(n)的整数。文章源于2009年哈尔滨工业大学计算机研究生机试真题,讲解了素数定义并分析了朴素算法和优化策略。
摘要由CSDN通过智能技术生成

素数判定 - 九度教程第50题

题目

时间限制:1秒 内存限制:32兆 特殊判题:否
题目描述:
给定一个数n,要求判断其是否为素数(0,1负数都是非素数)。
输入:
测试数据有多组,每组输入一个数n.
输出:
对于每组输入,若是素数则输出yes,否则输出no。
样例输入:
13
样例输出:
yes
来源:
2009 年哈尔滨工业大学计算机研究生机试真题

素数(又叫质数),素数即只能被自身和1整除的大于1的正整数。
可以用所有大于1小于其本身的整数去试着整除该数,若在该区间内存在某个数能整除该数则该数不是素数;若这些数都不能整除它则该数为素数。这一朴素的算法思想时间复杂度为O(n),n为要测试的数字。
其实只需测试到不比sqrt(n)(对n开根号)大的整数即可,若到这个整数为止,所有正整数均不能整除n则可断定n为素数。
若n不存在大于sqrt(n)的因数时,该做法显然正确。若假设n存在大于等于sqrt(n)的因数y,则z=n/y必同时为n的因数,其值小于等于sqrt(n)(否则z*y>n)。所以若n存在相异于1与其本身的因数且该因数大于sqrt(n),则必存在小于或等于sqrt(n)的因数,所以只需测试到sqrt(n)为止。这样复杂度就降低到了O(sqrt(n))

#include <stdio.h>
#i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值