堆结构与堆排序

本文详细介绍了堆的定义,包括满二叉树和完全二叉树的概念,并探讨了大根堆和小根堆的区别。接着,阐述了如何使用数组模拟堆结构以及如何调整数组成为大根堆的过程。最后,讲解了堆排序的实现理论,包括其时间复杂度,并提及了堆排序的代码实现和应用。
摘要由CSDN通过智能技术生成

一、堆的定义

堆其实就是一颗完全二叉树。

先说满二叉树,满二叉树就是除了最后一层结点没有孩子,其余的的节点都有左孩子和右孩子。

完全二叉树包含满二叉树,也就是说完全二叉树是每个子树的孩子是从左往右补齐的。一颗满二叉树同时也是一颗完全二叉树。

完全二叉树

这张图片中,第三个树的孩子不是从左向右补齐的,如果变成这样,就是一颗完全二叉树。

完全二叉树

二、堆的分类

堆分为大根堆和小根堆。

大根堆:一颗完全二叉树的每颗子树的最大值就是它的头部。

小根堆:一颗完全二叉树的每颗子树的最小值就是它的头部。

大根堆与小根堆

三、如何用数组模拟堆结构

我们可以使用数组模拟堆结构,数组中下标为 i 的数,它的左孩子下标为 2 * i + 1,右孩子下标为 2 * i + 2,父节点下标 ( i - 1 ) / 2。(在不越界的情况下),这样数组就可以被看做一颗完全二叉树。

四、怎么将数组(堆)调成大根堆

数组变为大根堆

总结起来就是:每新增一个结点,判断是否大于它的头部

(1)大于,交换两个结点。来到新位置后,继续和它的父结点比较

(2)小于等于,位置不变,继续增加新的结点。

五、堆排序

(一)、堆排序的实现理论
  1. 有一个数组,长度为 n。
  2. 用这 n 个结点,形成一个大根堆。
  3. 大根堆的顶部与大根堆的最后一个数作交换,将堆的结点数减 1。获得最大值。
  4. 继续用剩下的结点形成一个大根堆。
  5. 继续 3 、 4 步骤 ,直到堆内没有结点。
(二)、堆排序的代码实现
import java.util.Arrays;

public class HeapSort {
	public static void heapSort(int[] arr) {
		if (arr==null || arr.length < 2)
			return;

		for (int i = 0; i < arr.length; i++) {			// 将数组变成大根堆
			heapInsert(arr, i);
		}

		int size = arr.length;
		while (size > 0) {
			heapify(arr, 0, size);					// 结点值发生变换,重新生成大根堆
			swap(arr, 0, --size);							// 交换头部和最后一个数,堆结点数量减 1
		}


	}

	// 数组调整为大根堆
	public static void heapInsert(int[] arr, int index) {
		// 当前结点值大于它的父结点值,交换位置,继续在新的位置和父结点比较
		while (arr[index] > arr[(index-1) / 2]) {
			swap(arr, index, (index-1) / 2);
			index = (index - 1) / 2;
		}
	}

	// 结点值发生变换,重新生成大根堆
	public static void heapify(int[] arr, int index, int heapSize) {
		int left = 2 * index + 1;						// 左孩子下标
		while (left < heapSize) {
			// 判断左孩子和右孩子谁最大
			int largset = left + 1 < heapSize && arr[left + 1] > arr[left] ? left + 1 : left;
			// 两个孩子中的最大值和当前位置比较
			largset = arr[largset] > arr[index] ? largset : index;
			// 如果最大值就是自己,不需要进行调整
			if (largset == index) {
				break;
			}
			// 最大值不是自己,交换位置
			swap(arr, largset, index);
			// 交换后,需要继续与父结点进行比较,直到形成大根堆为止
			index = largset;
			// 更新左孩子的下标
			left = 2 * index + 1;
		}

	}

	// 交换两个数的位置
	public static void swap(int[] arr, int i, int j) {
		int temp = arr[i];
		arr[i] = arr[j];
		arr[j] = temp;
	}
	
	public static void main(String[] args) {
		int[] a = {1, 2 ,4, 5, 4, 10, 2};
		System.out.println(Arrays.toString(a));
		heapSort(a);
		System.out.println(Arrays.toString(a));
	}
}


(三)、堆排序的时间复杂度

堆排序的时间复杂度为 O(N*logN)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值