一、堆的定义
堆其实就是一颗完全二叉树。
先说满二叉树,满二叉树就是除了最后一层结点没有孩子,其余的的节点都有左孩子和右孩子。
完全二叉树包含满二叉树,也就是说完全二叉树是每个子树的孩子是从左往右补齐的。一颗满二叉树同时也是一颗完全二叉树。
这张图片中,第三个树的孩子不是从左向右补齐的,如果变成这样,就是一颗完全二叉树。
二、堆的分类
堆分为大根堆和小根堆。
大根堆:一颗完全二叉树的每颗子树的最大值就是它的头部。
小根堆:一颗完全二叉树的每颗子树的最小值就是它的头部。
三、如何用数组模拟堆结构
我们可以使用数组模拟堆结构,数组中下标为 i 的数,它的左孩子下标为 2 * i + 1,右孩子下标为 2 * i + 2,父节点下标 ( i - 1 ) / 2。(在不越界的情况下),这样数组就可以被看做一颗完全二叉树。
四、怎么将数组(堆)调成大根堆
总结起来就是:每新增一个结点,判断是否大于它的头部
(1)大于,交换两个结点。来到新位置后,继续和它的父结点比较
(2)小于等于,位置不变,继续增加新的结点。
五、堆排序
(一)、堆排序的实现理论
- 有一个数组,长度为 n。
- 用这 n 个结点,形成一个大根堆。
- 大根堆的顶部与大根堆的最后一个数作交换,将堆的结点数减 1。获得最大值。
- 继续用剩下的结点形成一个大根堆。
- 继续 3 、 4 步骤 ,直到堆内没有结点。
(二)、堆排序的代码实现
import java.util.Arrays;
public class HeapSort {
public static void heapSort(int[] arr) {
if (arr==null || arr.length < 2)
return;
for (int i = 0; i < arr.length; i++) { // 将数组变成大根堆
heapInsert(arr, i);
}
int size = arr.length;
while (size > 0) {
heapify(arr, 0, size); // 结点值发生变换,重新生成大根堆
swap(arr, 0, --size); // 交换头部和最后一个数,堆结点数量减 1
}
}
// 数组调整为大根堆
public static void heapInsert(int[] arr, int index) {
// 当前结点值大于它的父结点值,交换位置,继续在新的位置和父结点比较
while (arr[index] > arr[(index-1) / 2]) {
swap(arr, index, (index-1) / 2);
index = (index - 1) / 2;
}
}
// 结点值发生变换,重新生成大根堆
public static void heapify(int[] arr, int index, int heapSize) {
int left = 2 * index + 1; // 左孩子下标
while (left < heapSize) {
// 判断左孩子和右孩子谁最大
int largset = left + 1 < heapSize && arr[left + 1] > arr[left] ? left + 1 : left;
// 两个孩子中的最大值和当前位置比较
largset = arr[largset] > arr[index] ? largset : index;
// 如果最大值就是自己,不需要进行调整
if (largset == index) {
break;
}
// 最大值不是自己,交换位置
swap(arr, largset, index);
// 交换后,需要继续与父结点进行比较,直到形成大根堆为止
index = largset;
// 更新左孩子的下标
left = 2 * index + 1;
}
}
// 交换两个数的位置
public static void swap(int[] arr, int i, int j) {
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
public static void main(String[] args) {
int[] a = {1, 2 ,4, 5, 4, 10, 2};
System.out.println(Arrays.toString(a));
heapSort(a);
System.out.println(Arrays.toString(a));
}
}
(三)、堆排序的时间复杂度
堆排序的时间复杂度为 O(N*logN)