【Redis】NOSQL

3V+3高

大数据时代的3V:

  1. 海量Volume
  2. 多样Variety
  3. 实时Velocity

互联网需求的3高:

  1. 高并发
  2. 高可扩
  3. 高性能

在这样的一个3V和3高的时代发展下,关系型数据库已经不能够满足需求因此引入了非关系型数据库。

RDBMS和NOSQL区别

RDBMS:

  1. 高度组织化结构化数据
  2. 结构化查询语言
  3. 数据和关系都存储在单独的表中
  4. 严格的一致性
  5. 基础事务

NOSQL:

  1. 代表着不仅仅是sql
  2. 没有声明性查询语言
  3. 没有预定的模式
  4. 键值对存储,列存储,文档存储
  5. 最终一致性,而非ACID属性
  6. 非结构化和不可预知的数据
  7. CAP定理
  8. 高性能,高可用性和可伸缩性

NOSQL数据库的四大分类

  1. KV键值
    新浪:redis
    美团:Reids+Tair
    阿里、百度:Redis+memecache
  2. 文档型数据库(bson格式与json一样):CouchDB、MongoDB
    MongoDB:是一个基于分布式文件存储的数据库,C++编写,主要用来处理大量文档
  3. 列存储数据库:分布式文件系统,HBase
  4. 图关系数据库:不是放图形的,而是放关系
分类Examples举例典型的应用场景数据模型优点缺点
键值(KV)Redis,Voldemort,Oracle BDB内容缓存,主要用于处理大量数据的高访问负载,也用于一些日志系统通常用HashTable来实现查找速度快数据无结构化,通常只被当做字符串或者二进制数据
文档型数据库CouchDB,MongoDBweb应用K-V对应的键值对,value为结构化数据数据结构要求不严格,表结构可变,不需要想关系型数据库一样需要预先定义表结构查询性能不高,而且缺乏统一的查询语法
列存储数据库分布式文件系统,HBase分布式的文件系统以列簇式存储,将同一列数据存在一起查找速度快,可扩展性强,更容易进行分布式扩展功能相对局限
图关系数据库Neo4J,InfoGrid社交网络,推荐系统等,专注于构建关系图谱图结构利用图结构的相关算法很多时候需要对整个图做计算才能得出需要的信息,而且这种图结构不太好做分布式的集群方式
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值