3V+3高
大数据时代的3V:
- 海量Volume
- 多样Variety
- 实时Velocity
互联网需求的3高:
- 高并发
- 高可扩
- 高性能
在这样的一个3V和3高的时代发展下,关系型数据库已经不能够满足需求因此引入了非关系型数据库。
RDBMS和NOSQL区别
RDBMS:
- 高度组织化结构化数据
- 结构化查询语言
- 数据和关系都存储在单独的表中
- 严格的一致性
- 基础事务
NOSQL:
- 代表着不仅仅是sql
- 没有声明性查询语言
- 没有预定的模式
- 键值对存储,列存储,文档存储
- 最终一致性,而非ACID属性
- 非结构化和不可预知的数据
- CAP定理
- 高性能,高可用性和可伸缩性
NOSQL数据库的四大分类
- KV键值
新浪:redis
美团:Reids+Tair
阿里、百度:Redis+memecache - 文档型数据库(bson格式与json一样):CouchDB、MongoDB
MongoDB:是一个基于分布式文件存储的数据库,C++编写,主要用来处理大量文档 - 列存储数据库:分布式文件系统,HBase
- 图关系数据库:不是放图形的,而是放关系
分类 | Examples举例 | 典型的应用场景 | 数据模型 | 优点 | 缺点 |
---|---|---|---|---|---|
键值(KV) | Redis,Voldemort,Oracle BDB | 内容缓存,主要用于处理大量数据的高访问负载,也用于一些日志系统 | 通常用HashTable来实现 | 查找速度快 | 数据无结构化,通常只被当做字符串或者二进制数据 |
文档型数据库 | CouchDB,MongoDB | web应用 | K-V对应的键值对,value为结构化数据 | 数据结构要求不严格,表结构可变,不需要想关系型数据库一样需要预先定义表结构 | 查询性能不高,而且缺乏统一的查询语法 |
列存储数据库 | 分布式文件系统,HBase | 分布式的文件系统 | 以列簇式存储,将同一列数据存在一起 | 查找速度快,可扩展性强,更容易进行分布式扩展 | 功能相对局限 |
图关系数据库 | Neo4J,InfoGrid | 社交网络,推荐系统等,专注于构建关系图谱 | 图结构 | 利用图结构的相关算法 | 很多时候需要对整个图做计算才能得出需要的信息,而且这种图结构不太好做分布式的集群方式 |