算法导论第四章(数组的连续最大和)

本文介绍了如何运用分治策略来求解数组中的连续最大和问题。通过分析,最大和可能存在于数组的左侧、右侧或者跨越数组的中间点。通过对这三种情况进行分别处理,可以有效地找到连续子数组的最大和。
摘要由CSDN通过智能技术生成

分治法求解。最大值必然出现在完全位于数组左边、完全位于数组右边,跨越中点三种情况。

package chapter4;

import java.util.Scanner;

/*
 * 所有连续子数组中和最大的值
 */
public class FindMaximumSub {
	public static void main(String[] args) {
		Scanner sc = new Scanner(System.in);
		int n = sc.nextInt();//数组元素个数
		int[] arr = new int[n];
		for (int i = 0; i < n; i++) {
			arr[i] = sc.nextInt();
		}

		long max = findMaxSub(arr, 0, arr.length - 1);
		System.out.println(max);

	}

	private static Long findMaxSub(int[] arr, int i, int j) {
		if (i == j) {
			return (long) arr[i];
		} else {
			int mid = (int) Math.floor((i + j) / 2);
			Long leftSum = findMaxSub(arr, i, mid);
			Long rightSum = findMaxSub(arr, mid + 1, j);
			Long crossSum = findMaxCrossSub(arr, i, j, mid);

			if (leftSum >= rightSum && leftSum >= crossSum) {
				return leftSum;
			} else if (rightSum >= leftSum && rightSum >= crossSum) {
				return rightSum;

			} else {
				return crossSum;
			}
		}

	}

	private static Long findMaxCrossSub(int[] arr, int i, int j, int mid) {
		Long leftSum = (long) Integer.MIN_VALUE;
		Long sum1 = 0l;
		for (int k = mid; k >= i; k--) {
			sum1 += arr[k];
			if (sum1 > leftSum) {
				leftSum = sum1;
				int maxLeft = k;
			}
		}

		Long rightSum = (long) Integer.MIN_VALUE;
		Long sum2 = 0l;
		for (int k = mid + 1; k <= j; k++) {
			sum2 += arr[k];
			if (sum2 > rightSum) {
				rightSum = sum2;
				int maxRight = k;
			}
		}
		return rightSum + leftSum;
	}
}

输入:4
      1 4 -2 3
输出:6


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值