PAIE-提示学习用于事件抽取领域

Prompt for Extraction? PAIE: Prompting Argument Interaction for Event Argument Extraction

摘要

PAIE模型在训练数据不足的情况下,可以高效的进行句子级和文档级事件论元抽取。

一方面,PAIE模型利用对提取目标的提示信息来充分利用PLMs的优势。两个片段选择器,根据提示从每个角色的输入文本开始、结束标记

另一方面,通过多角色提示捕获论元交互,并通过二部匹配损失进行最优片段分配的联合优化

另外,通过灵活的提示设计,可以提取相同角色的多个论元,不同于传统的启发式阈值调整

效果提升了PAIE-base 3.5%和PAIE-large2.3%

使用了三个数据集  ACE05     RAMS      WIKIEVENTS

当前研究不足和本研究创新

事件论元抽取可分为两大类

一、语义角色标注问题

     两个步骤,首先确定候选片段,然后对角色进行分类

     尽管提出了联合模型来共同优化它们,但对候选对象的高度依赖仍然可能受到错误传播的影响

二、遵循预先训练的模型,通过问答和文本生成来解决EAE

     基于问答的模型可以有效地识别带有角色特定问题的论元的边界,而预测必须逐个进行。

     基于生成的方法对于生成所有论元是有效的,但顺序预测降低了对远距离和更多论元的性能。

对于提示抽取,设计两个基于角色的片段选择器,从输入文本中选择开始和结束标记,三种类型的提示模板:手动模板、连接模板、软提示,在句子级和文档级上性能较好

对于联合片段选择,设计了二部匹配损失,使预测和真实之间代价最小,从而使每个论元都能找到最优的角色提示,

还可以通过灵活的角色调试来处理同一角色的多个论元,而不是启发式阈值调整。

方法:

PAIE考虑了多个论元及其相互作用,以促使PLM进行联合提取。该模型包含三个核心组件:提示创建、片段选择器解码和片段预测

现有的基于提示的方法主要集中在分类和生成任务上,传统的提取目标被转换为一个生成任务。这带来了一个低效问题,即该模型必须列举所有提取候选。基于提示的方法直接应用于提取,在这里,我们给出了一个通用的提取提示方法的公式,

1. 提示创建。给定上下文X和一系列查询Q={q1,q2,...,qk},创建一个包含所有这些查询的联合提示,其中fPrompt是提示创建器。

  2. 提示选择器解码。在给定PLM L、上下文X和提示Pt的情况下,我们按如下方式解码特定于查询的(回答)范围选择符:

HL是PLM的输出。

3.提示片段选择。为了找到最佳范围,我们为上下文中的开始标记和结束标记设计了两个选择器:

 (s,e)qk是关于第k个查询的片段,而gL是片段选择器。显然,这种公式主要考虑了片段的邻接约束,比生成式提取要好。

X表示上下文,t表示触发词,e表示事件类型,R(E)表示事件特定角色类型的集合,

对于事件论元抽取提示创建

提示中提到的角色作为槽,这样的设计允许我们的模型捕获不同角色之间的隐式交互。

特定角色选择器生成

给定上下文X和提示符Pt,该模块为提示的每个槽k生成特定于角色的片段选择器θk。

文本标记,<t></t>分别插入到上下文X中的触发词之前和之后。

 

我们没有直接将处理后的上下文˜X和提示P连接起来,而是将上下文分别馈送到BART编码器和BART解码器,提示和上下文将在解码器模块的交叉注意力层相互作用。

 

HX表示面向事件的上下文表示,HPT表示面向上下文的提示表示。

角色特征ψk∈Rh

 

使用提示跨度选择器进行学习

给定上下文表示Hx和一组片段选择器{θk},每个θk旨在从Hx中提取至多一个对应的论元片段(sk,ek)。对于与θk有关的一个论元ak=˜xi:j,其中i和j是上下文中的开始和结束词索引,期望选择器输出(ˆsk,ˆek)=(i,j)作为预测。并且对于与无论元相关的θk(当上下文没有关于该角色的论元时,或者该角色的槽号超过论元号),它期望输出(ˆsk,ˆek)=(0,0),表示空参数ϵ。

首先遵循提取提示公式来计算每个标记的分布,这些标记被选作每个角色特征的论元的开始/结束。

 

Logit(开始)k和logit(结束)k表示每个槽k的上下文令牌上的开始和结束位置分布,L表示上下文长度。

然后,我们计算开始/结束位置所在的概率:

将损失函数定义为:

 其中D覆盖数据集中的所有上下文,而k覆盖提示X中的所有槽。

二部匹配

我们可选择引入二部匹配来处理同一角色的多个参数,以寻找具有最小代价匹配的全局最优分配。由于我们插入了关于这个角色的多个槽,每个槽生成一个预测,所以这是一个典型的二部匹配问题,它尽可能地匹配(每个槽的)局部最优预测和基本事实。

推理

为了进行推断,我们将事件论元的候选片段集合定义为C={(i,j)|(i,j)∈L2,0<j−L≤L}∪{(0,0)}。它包含小于阈值L的所有片段和表示无论元的特殊跨度(0,0)。我们的模型通过枚举所有候选片段并为其打分来提取每个片段选择器θk的论元:

 槽k的预测片段由下式给出

 由于提示中的每个槽最多预测一个片段,因此该策略避免了穷举的阈值调整

实验

事件论元提取任务中的三个常见数据集上进行了实验:RAMS(Ebner等人,2020),WIKIEVENTS(Li等人,2021)和ACE05(Doddington等人,2004)。RAMS和WIKIEVENTS是最新的文档级EAE基准,而ACE05是通常用于句子级EAE任务的经典数据集。

评估指标

我们采用两种评估指标。(1)论元识别F1分数(ARGI):如果事件参数的偏移量和事件类型与所提到的任何参数的偏移量和事件类型匹配,则正确识别事件参数。

对比的模型

多标签分类模型

生成模型

问答模型

(2)论元分类F1分(Arg-C):如果事件参数的角色类型也是正确的,则该事件参数被正确分类。对于WIKIEVENTS数据集,我们遵循(Li等人,2021)并另外评估论元头部F1分数(Head-C),这只涉及参数头部的匹配。

图表分析

图1句子级和文档级事件论元提取示例,触发词包含在<t></t>中,带下划线的为论元,弧线为角色

 图2 PAIE的整体架构。在给定上下文(关于事件)的情况下,PAIE首先根据其事件类型创建联合提示。然后,将上下文和提示反馈到BART-编码器和BART-解码器,以生成上下文表示和特定于角色的片段选择器。多个片段选择器同时从上下文中提取论元片段。二部匹配损失最终优化了全局片段分配。

图3 Arg-C F1使用表1中三种不同类型的联合提示,外加关于三个基准的单一模板。MA:手动模板。SF:软提示。CA:拼接模板。single:单一模板。

 图4 Arg-C F1 w.r.t WIKIEVENTS的不同阈值。我们用红色虚线画出了PAIE的性能以供比较(无阈值调整)。

 图5Arg-C F1在三个不同基准上的得分与训练数据比率

表1提示变体MA:手动模板。SF:软提示。CA:拼接模板。软提示中带尖括号的单词表示连续提示的特定于角色的伪标记。对于多论元情况,我们只需在方括号中添加槽。

表2  整体性能

 表3 三个基准的消融研究

 表4不同PLM的Arg-C F1。BE和BA表示BERT和BART。请注意,我们还尝试了仅使用编码器的PLM,例如PAIEE设置下的BERT,它不需要解码器。

 表5 在RAMS开发集上按论元-触发距离d划分的性能(Arg-C F1得分)。括号中给出了每种情况的论元编号。

 表6 WIKIEVENTS上的Arg-C F1按一个角色的n个论元。方括号中给出了案例编号。

表7  不同模型在ACE05、RAMS、WIKIEVENTS测试集上的推理时间(秒)。实验在同一个NVIDIA-1080TiGPU上运行。

 不足与展望

在未来,我们有兴趣研究共指作为EAE的一项辅助任务,并引入实体信息来更好地确定论元边界。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值