- 博客(7)
- 收藏
- 关注
原创 文献阅读(三)
Cold-start data(冷启动数据)新模型训练的初始数据:当训练一个全新的深度学习模型时,最初输入模型的那批数据就是冷启动数据。这些数据用于模型的初始化训练,让模型开始学习数据中的特征和模式。例如,在训练一个图像识别模型来识别猫和狗的图像时,刚开始输入的一批包含猫和狗的图片及对应的标注信息就是冷启动数据。由于模型此时对数据特征毫无了解,处于完全 “冷” 的状态,需要从这些数据中逐步提取特征,建立起初步的模型参数。
2025-02-07 11:21:14
1350
原创 HOW DO VISION TRANSFORMERS WORK?(豆包阅读)
本文通过一系列严谨的实验和深入的分析表明,MSAs 并非简单的广义 Convs,而是与 Convs 互补的广义空间平滑机制。AlterNet 模型成功地整合了 MSAs 和 Convs 的优势,在不同数据规模的视觉任务中均取得了良好的效果,且具有很大的改进潜力。未来的研究可聚焦于 MSAs 在密集预测任务中的应用,以及深入探究数据增强对模型不确定性校准的影响,为计算机视觉领域的模型发展开辟新的路径和方向。感觉生成的还不错,看一些综述可以。
2024-12-27 15:26:41
866
原创 文献阅读(二)
医学报告自动生成(MRG)具有重要的研究价值,因为它有可能减轻放射科医生撰写报告的沉重负担。尽管最近取得了进展,但由于需要精确的临床理解和疾病识别,准确的MRG仍然具有挑战性。此外,疾病分布的不平衡使得挑战更加突出,因为罕见疾病在训练数据中的代表性不足,使得其诊断不可靠。为了解决这些挑战,我们提出了诊断驱动的提示医疗报告生成(MRG),一个新的框架,旨在提高诊断的指导下,诊断意识提示MRG的诊断准确性。具体地,MRG是基于具有额外疾病分类分支的编码器-解码器架构。
2024-12-10 15:17:20
1492
原创 文献阅读(一)
近年来,基于Transformer 的图像分类方法在各种图像分类任务中显示出显著的有效性。然而,它们在医学图像中的应用面临着挑战,特别是在网络的特征提取能力方面。此外,这些模型往往难以在整个网络中有效地传播基本信息,从而阻碍了它们在医学成像任务中的表现。为了克服这些挑战,我们引入了一个由Local-Global Transformer模块和Spatial Attention Fusion模块组成的新框架,统称为Med-Former。这些模块旨在增强局部和全局的特征提取能力,并改善网络中重要信息的传播。
2024-12-04 16:31:47
1106
原创 医学超声图像处理(一)---数据集
该数据集包括在 2018 年和 2019 年期间获得的 162 个心尖 4 腔 (A4C) 视图二维超声心动图 (echo) 记录的集合.用于检测心脏左心室 (LV) 壁上的心肌梗塞(心脏病发作). 视频来自一年内执行的 10, 000 多个检查, 其中包括 800 多例因急性 ST 段抬高心肌梗死 (MI) 入院的病例. HMC-QU 数据集中包含的回声属于 93 名 MI 患者(均为首次和急性 MI)和 69 名正常(非 MI)受试者。218例患者中,正常、良性、恶性分别为71例、100例和47例。
2024-12-03 17:02:43
4513
原创 .safetensors 文件、.ckpt文件、.pth和.bin文件
.safetensors 是一种模型权重文件格式。它是由 Hugging Face 开发的,主要用于存储深度学习模型的参数。这种格式的设计目的是提供更安全和高效的模型权重存储方式。-.ckpt 文件是深度学习模型训练过程中的检查点文件。在模型训练过程中,为了能够在后续恢复训练或者保存模型的阶段性成果,通常会定期保存模型的参数、优化器状态等信息到.ckpt 文件中。-.pth 文件通常是 PyTorch 深度学习框架中用于保存模型权重的一种格式。
2024-11-29 15:58:58
2604
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人