自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(12)
  • 收藏
  • 关注

原创 桥接模式-Go

桥接模式从最初的四人帮开始,桥接就是一个有点神秘的定义。它将抽象与其实现分离,以便两者可以独立变化。这种神秘的解释只是意味着您甚至可以将最基本的功能形式分离:将对象与它所做的事情分离描述桥接模式尝试像往常一样将事物与设计模式分离。它将抽象(对象)与其实现(对象所做的事情)分离。这样,我们可以随心所欲地改变一个对象所做的事情。它还允许我们在重用相同实现的同时更改抽象对象。目标桥接模式的目标...

2020-03-04 14:32:57 309 1

原创 适配器模式-Go

适配器模式最常用的结构模式之一是适配器模式。就像在现实生活中,你有插头适配器和螺栓适配器,在Go中,适配器将允许我们使用一些在开始时不是为特定任务而构建的东西。描述适配器模式非常有用,例如,当一个接口过时,无法轻松或快速地替换它时。相反,您可以创建一个新接口来处理应用程序的当前需求,该接口在幕后使用旧接口的实现。适配器还帮助我们在应用程序中遵循开闭原则,使它们更加可预测。它们还允许我们编写...

2020-03-03 15:02:26 226

原创 复合模式-Go

结构模式通过常用的结构和关系帮我们塑造应用,在Go语言中最常用的模式是复合模式,因为在Go语言中没有继承的概念,而鼓励复合的使用复合模式复合设计模式倾向于组合(通常定义为具有关系)而不是继承(即关系)。自90年代以来,组合继承方法一直是工程师们讨论的话题。我们将学习如何使用has a方法创建对象结构。总之,Go没有继承权,因为它不需要继承权!描述在复合设计模式中,您将创建对象的层次结构和树...

2020-03-03 15:00:57 231

原创 原型模式-Go

原型模式描述原型模式的目标是在编译期就获得一个或一系列可以在运行期无限次克隆的对象。比如用户注册时的默认模板或者某些服务的默认价格方案。原型模式与建造者模式最大的不同点在于,原型模式获取的对象时克隆出来的而不是在运行时建造出来的。也可以使用一个类似缓存的解决方案,用原型存储信息。目标原型设计模式的主要目标是避免重复创建对象。 想象一下一个默认的对象,它由几十个字段和嵌入的类型组成。 我们不...

2020-03-03 15:00:20 183

原创 抽象工厂-Go

抽象工厂——工厂的工厂工厂方法将一族相关对象分组在一起,如果我们将对象族按更结构化的层次分组会怎样?描述抽象工厂设计模式是一个新的分组层,用于实现更大更复杂的组合对象,该对象通过接口使用。对族中的对象分组和对族进行分组的想法是要拥有可以互换且更容易成长的大型工厂。开发的早期阶段,与工厂和抽象工厂合作要比等到所有具体实现都完成再启动代码要容易的多。另外,除非我们知道在特定领域的库存将非常大并且...

2020-03-03 14:59:54 151

原创 工厂方法-Go

工厂方法——委托创建不同类型工厂方法(或工厂)是工业实践中第二常用的设计模式。其目的是要达到特定的目标而需要实现的结构只是中将用户抽离出来(不是人话),例如从网络服务或者数据库中检索一些值。用户只需要一个获取值的接口。如果需要,还可以简化底层类型实现的降级或者升级过程(还不是人话)。描述使用Factory方法设计模式时,我们获得了额外的封装层,以便我们的程序可以在受控环境中增长。 使用Fac...

2020-03-03 14:59:19 217

原创 建造者模式-Go

建造者模式——接口多种实现的重用方法描述对象的创建可以简单到只有花括号{},也可以复杂到需要调用API,检查状态,为属性创建对象。在Go语言中不支持继承,复用的特性则来自多个结构体的组合,所以一个对象的实例化需要多个对象组合在一起。与此同时,你可能需要基本相同的技术去创建许多不同类型的对象。例如建造一辆轿车和一辆巴士的技术基本相同,不同的仅仅是车的大小,座位数等等,为了重用建造过程,就有了建...

2020-03-03 14:58:28 143

原创 单例模式-Go

单例模式——在整个程序中某类型只有唯一实例描述单例模式提供某类型的唯一实例,并且保证没有其他副本。在第一次调用实例的时候创建实例,该实例后续在程序其他地方被复用。预期目标我们需要某种特定类型的,单一的、共享的值。在整个程序中某些类型的对象数量限制为一。例子下述例子中实现了一个具有唯一计数变量count的singleton。其中Singleton为接口,所有实现了接口中定义的Ad...

2020-02-24 11:02:18 167

翻译 斯坦福大学卷积神经网络----Module 1 Lesson 4 反向传播

原文地址:http://cs231n.github.io/optimization-2/ 标题:Backpropagation,Intuitions 随手翻译,不当之处请指正介绍动机 在这个部分我们通过一些“直觉”来理解反向传播,也就是一种使用链式(求导)法则递归地计算梯度表达式的方法。理解其中的精妙之处非常重要,帮助理解,高效地开发,设计,调试神经网络。问题陈述 前面学到的核心问题是:我们

2016-11-30 08:17:23 1077

翻译 斯坦福大学卷积神经网络----Module 1 Lesson 3 优化

原文地址:http://cs231n.github.io/optimization-1/ 标题:Optimization: Stochastic Gradient Descent 随手翻译,不当之处请指正介绍前面的章节中我们介绍了图像分类任务的两个关键部分:将原始图像映射成一系列类别得分的(参数化的)评分函数(例如线性函数)。基于预测值与真实标签的吻合程度而衡量一系列参数的损失函数。损失函数

2016-11-29 10:19:24 1094

翻译 斯坦福大学卷积神经网络----Module 1 Lesson 2 线性分类

原文地址:http://cs231n.github.io/linear-classify/ 标题:Linear classification: Support Vector Machine, Softmax 随手翻译,不当之处请指正线性分类上一部分我们介绍过图片分类的问题,也就是从一系列不同的类别中挑出来一个为某张图片贴上标签。还有,我们介绍了K-最近邻分类器,让测试图片与带标签的训练图片逐一对

2016-11-20 21:58:13 1250

翻译 斯坦福大学卷积神经网络----Module 1 Lesson 1 图像分类

原文地址:http://cs231n.github.io/classification/图像分类动机:在这个部分我们会介绍图片分类问题,这是一个为输入图片从一系列分类中挑选一个合适的标签的过程。这是计算机视觉的核心问题之一,除了它看上去的简单外表之外,还有非常多的实际应用之处。除此之外,后面课程可能看到的其他的计算机视觉任务(例如目标检测,分割)都可以回归为图像分类问题。 例:下图中一个简单的图像

2016-11-15 17:04:45 4044

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除