进阶79 母牛制造的回文

据说如果你给无限只母牛和无限台巨型便携式电脑(有非常大的键盘),那么母牛们会制造出世上最棒的回文。你的工作就是去这些牛制造的奇观(最棒的回文)。在寻找回文时不用理睬那些标点符号、空格(但应该保留下来以便做为答案输出),只用考虑字母’A’-‘Z’和’a’-‘z’。要你寻找的最长的回文的文章是一个不超过20,000个字符的字符串。我们将保证最长的回文不会超过2,000个字符(在除去标点符号、空格之前)。

输入

一个不超过20,000个字符的文件。

输出

输出的第一行应该包括找到的最长的回文的长度。
下一个行或几行应该包括这个回文的原文 ( 没有除去标点符号、空格 ),
把这个回文输出到一行或多行 ( 如果回文中包括换行符 )。
如果有多个回文长度都等于最大值,输出那个前出现的。

样例输入

Confucius say: Madam, I’m Adam

样例输出

11
Madam, I’m Adam

有个专门求解最长回文子串的算法:Manacher算法
又叫“马拉车”算法,可以在时间复杂度为O(n)的情况下求解一个字符串的最长回文子串长度的问题。
求解最长子串使用的是这个算法,因为这个是用的对称轴的思想来求解,所以这个算法只能拿求解最长子串的长度,但不能直接输出整个子串。
在此基础上通过记录对称位置,再对位置进行转换,既可以输出最长子串的原格式。

#include<iostream>
#include<cstring>
#include<cstdio> 
#include<cstdlib>
#include<algorithm>
using namespace std;
#define max(a,b) (((a) > (b)) ? (a) : (b))
#define min(a,b) (((a) < (b)) ? (a) : (b))
int lenA=0,lenB=0;
char A[20000],B[20000];
int S[20000];
int radius[40000];
char charArr[40000];
int t=0;
int manacher(){
	int i;
	charArr[0]='#';
	charArr[1]=B[0];
	//对纯字母串进行转换#。#...#。#
	for(i=2;i<=2*lenB;i+=2){
		charArr[i]='#';
		charArr[i+1]=B[i/2];
	}
    int R = -1;
    int c = -1;
	t=0;
    int max = -99;
    for ( i = 0; i < 2*lenB+1; i++) {
        radius[i] = R > i ? min(radius[2*c-i],R-i+1):1;
        while(i+radius[i] < 2*lenB+1 && i - radius[i] > -1){
            if(charArr[i-radius[i]] == charArr[i+radius[i]]){
                radius[i]++;
            }else{
                break;
            }
        }
        if(i + radius[i] > R){
            R = i + radius[i]-1;
            c = i;
        }
		if(max<radius[i]){
			t=i;
			max=radius[i];
		}
    }
    return max-1;
}

int main()
{
	char c;
	int i,j;
	while(1){
		c = getchar();
		if(c == EOF)break;
		//存储整个字符串
		A[lenA++]=c;
		if((c >= 'a') && (c <= 'z')){	
			//存储字母
			B[lenB] = c;
			//记录当前字母位于整个字符串中的位置
			S[lenB++]=lenA-1;
			
		}else if((c >= 'A') && (c <= 'Z')){
			B[lenB] = c+32;
			S[lenB++]=lenA-1;
        }
	}
	//求解最长回文子串长度
	i=manacher();
	int beg=t-i;
	int end=t+i;
	if(charArr[beg]=='#')beg++;
	if(charArr[end]=='#')end--;
	beg=(beg-1)/2;
	end=(end-1)/2;
	cout<<i<<endl;
	for(i=S[beg];i<=S[end];i++){
		printf("%c",A[i]);
	}
	cout<<endl;
	return 0;
}

Manacher算法的部分使用了下述文章的部分,讲解的很清晰。
参考文章
https://www.jianshu.com/p/116aa58b7d81

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值