c语言实现最小生成树的普里姆算法(《数据结构》算法7.9)

本文介绍了如何使用C语言实现无向网的最小生成树——普里姆算法。该算法从一个起点开始,逐步将顶点加入最小生成树,并维护从已加入顶点集到未加入顶点集的最小边。每次新加入顶点时,都会更新辅助数组以保持最小权值。由于其时间复杂度为O(n^2),适合于稠密图的处理。
摘要由CSDN通过智能技术生成

无向网的最小生成树的普里姆算法是对点进行操作,先把图中的所有点分成两个集合,U(已经加入最小生成树的点),V-U(还未加入最小生成树的点)。先再U中加入一个最小生成树的起点u,然后用一个辅助数组closedge[i]记录从U到V-U中每个点的最小权值。注意:每次新加入一个点到U时,要重新对辅助数组进行赋值。算法的时间复杂度与顶点数量有关,是O(n^2)。所以常对顶点数量少,边数量多的稠密图使用。

下面代码:

#include<stdio.h>
#define MAX_VERTEX_NUM 100
#define MAX 1e10
typedef struct{
	int vexs[MAX_VERTEX_NUM];
	int arcs[MAX_VERTEX_NUM][MAX_VERTEX_NUM];
	int vexnum,arcnum;
}MGraph;
struct{
	int adjvex;
	int lowcost;
}closedge[MAX_VERTEX_NUM];
bool inU[MAX_VERTEX_NUM]; //如果值为1表示vex【i】顶点在U中 
int LocateVex(MGraph G,int v){//返回顶点在图中的位置 
	for(int i=0;i<G.vexnum;i++){
		if(G.vexs[i]==v)return i;
	}
}
void CreateUDN(MGraph &G){//构造无向网的邻接矩阵 
	int i,j,k,v1,v2,weight;
	printf("分别输入顶点个数和边的个数:\n"); 
	sc
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值