无向网的最小生成树的普里姆算法是对点进行操作,先把图中的所有点分成两个集合,U(已经加入最小生成树的点),V-U(还未加入最小生成树的点)。先再U中加入一个最小生成树的起点u,然后用一个辅助数组closedge[i]记录从U到V-U中每个点的最小权值。注意:每次新加入一个点到U时,要重新对辅助数组进行赋值。算法的时间复杂度与顶点数量有关,是O(n^2)。所以常对顶点数量少,边数量多的稠密图使用。
下面代码:
#include<stdio.h>
#define MAX_VERTEX_NUM 100
#define MAX 1e10
typedef struct{
int vexs[MAX_VERTEX_NUM];
int arcs[MAX_VERTEX_NUM][MAX_VERTEX_NUM];
int vexnum,arcnum;
}MGraph;
struct{
int adjvex;
int lowcost;
}closedge[MAX_VERTEX_NUM];
bool inU[MAX_VERTEX_NUM]; //如果值为1表示vex【i】顶点在U中
int LocateVex(MGraph G,int v){//返回顶点在图中的位置
for(int i=0;i<G.vexnum;i++){
if(G.vexs[i]==v)return i;
}
}
void CreateUDN(MGraph &G){//构造无向网的邻接矩阵
int i,j,k,v1,v2,weight;
printf("分别输入顶点个数和边的个数:\n");
sc