题目大意就是要求下面的G:
G=1; for(i=1;i<N;i++) for(j=i+1;j<=N;j++) G*=GCD(i,j); /* Here GCD() is a function that finds the greatest common divisor of the two input numbers */
思路:
首先N最大为200000不能暴力。
- 设N的G值为 f[n] 则f[n]=(f[n-1]*gcd(1,n)*gcd(2,n)*。。。*gcd(n-1,n));
- 只要求出gcd(1,n)*gcd(2,n)*。。。*gcd(n-1,n) 题目就解决了。而与若k=gcd(n,m)则k必然为n的因子。 1=gcd(n/k,m/k);则n/k与m/k互质。则说明与n最大公约数为k的个数为phi[n/k]; 只要枚举出n的因子求出个数。快速幂求解。就能求出gcd(1,n)*gcd(2,n)*。。。*gcd(n-1,n)。
#include<cmath>
#include<cstdio>
#include<cstring>
#define N 200001
#define M N+20
#define P 10133
using namespace std;
int phi[M],f[M];
int gao(int a,int b)
{
int res=1;
while(b)
{
if(b&1)res=(res*a)%P;
a=(a*a)%P;
b>>=1;
}
return res;
}
int main()
{
int t,i,tmp,j,k,n,m;
memset(phi,0,sizeof(phi));
phi[1]=1;
for(i=2;i<N;i++)
if(!phi[i])
{
for(j=i;j<N;j+=i)
{
if(!phi[j])
phi[j]=j;
phi[j]=phi[j]/i*(i-1);
}
}
f[2]=1;
for(i=3;i<N;i++)
{
f[i]=f[i-1];
for(j=2;j*j<i;j++)
{
if(i%j!=0)continue;
tmp=gao(j,phi[i/j]);
f[i]=(f[i]*tmp)%P;
tmp=gao(i/j,phi[j]);
f[i]=(f[i]*tmp)%P;
}
if(j*j==i)
{
tmp=gao(j,phi[j]);
f[i]=(f[i]*tmp)%P;
}
// if(f[i]==0)
// break;
}
// printf("%d\n",i);
while(scanf("%d",&n)!=EOF)
{
printf("%d\n",f[n]);
}
}