Problem 1612 Hero's gcd

题目大意就是要求下面的G:

G=1;
for(i=1;i<N;i++)
	for(j=i+1;j<=N;j++)
		G*=GCD(i,j);
/* Here GCD() is a function that finds the greatest common divisor of the two input numbers */

思路:

首先N最大为200000不能暴力。

  1. 设N的G值为 f[n] 则f[n]=(f[n-1]*gcd(1,n)*gcd(2,n)*。。。*gcd(n-1,n));
  2. 只要求出gcd(1,n)*gcd(2,n)*。。。*gcd(n-1,n) 题目就解决了。而与若k=gcd(n,m)则k必然为n的因子。 1=gcd(n/k,m/k);则n/k与m/k互质。则说明与n最大公约数为k的个数为phi[n/k];  只要枚举出n的因子求出个数。快速幂求解。就能求出gcd(1,n)*gcd(2,n)*。。。*gcd(n-1,n)。
#include<cmath>
#include<cstdio>
#include<cstring>
#define N 200001
#define M N+20
#define P 10133
using namespace std;
int phi[M],f[M];
int gao(int a,int b)
{
	int res=1;
	while(b)
	{
		if(b&1)res=(res*a)%P;
		a=(a*a)%P;
		b>>=1;
	}
	return res;
}
int main()
{
	int t,i,tmp,j,k,n,m;
	memset(phi,0,sizeof(phi));
	phi[1]=1;
	for(i=2;i<N;i++)
		if(!phi[i])
		{
			for(j=i;j<N;j+=i)
			{
				if(!phi[j])
					phi[j]=j;
				phi[j]=phi[j]/i*(i-1);
			}
		}
	f[2]=1;
	for(i=3;i<N;i++)
	{
		f[i]=f[i-1];
		for(j=2;j*j<i;j++)
		{
			if(i%j!=0)continue;
			tmp=gao(j,phi[i/j]);
			f[i]=(f[i]*tmp)%P;
			tmp=gao(i/j,phi[j]);
			f[i]=(f[i]*tmp)%P;
		}
		if(j*j==i)
		{
			tmp=gao(j,phi[j]);
			f[i]=(f[i]*tmp)%P;
		}
	//	if(f[i]==0)
		//	break;
	}
//	printf("%d\n",i);
	while(scanf("%d",&n)!=EOF)
	{
		printf("%d\n",f[n]);
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值