信息量:国王找毒酒

问题背景:

一个国王有个酒窖,里面他存放1000瓶佳酿,但是有一天士兵来报,说他们抓到了一个间谍正在酒窖里投毒。据了解,这个间谍已经在众多酒中的一瓶里投了毒,但是他们不知道是哪瓶酒,而且间谍已经自杀身亡,现在没有人知道底细。更要命的是,这个间谍投的毒很利害,一滴致命。但是这种的特点是发作慢,要毒死一个人需要一个月。

问题要求:

请问这个国王如何让手下在短短一个月内找出哪瓶酒有毒,并且用到的手下人力最少?

解决思路:

题目中酒太多,我们举例只有8瓶酒,通过二进制对每瓶酒进行编码,再让3个手下按如下进行操作
在这里插入图片描述
假设一个月后,2号和3号死了,1号没死。那么根据2号3号的死,只能是第七瓶和第八瓶其中之一有毒;如果第八瓶有毒,1号应该也死了,但是1号没死,所以肯定不是第八瓶酒,有毒的就只能是第七瓶酒。这样我们只需要3个人就可以检测出有毒的那一瓶酒。

总结:

这类问题统一都是不确定情况的识别问题,涉及不确定性的度量。物理中叫熵,信息论中叫信息量,控制论中叫不确定性。 10进制猜测成功的概率是10%,二进制猜测成功的概率是50%。若N<10,二进制和十进制信息量分别为N-1和log ₂ N;若N>=10,可得以下推导,发现十进制信息量是二进制的2倍多。
在这里插入图片描述

### Python 实现毒酒小白鼠问题 为了到含有毒药的那一瓶,可以采用二进制编码的方法来最小化所需的老鼠数量。给定1000瓶,因为\(2^{10} = 1024\)大于1000,所以最多只需要10只老鼠就可以完成测试[^3]。 下面是一个简单的Python程序模拟这一过程: ```python def find_poisoned_bottle(bottles, poisoned_index): """ 使用二进制方法出有毒的瓶子。 参数: bottles (int): 总共的瓶子数目。 poisoned_index (int): 中毒瓶子的位置索引(从0开始计数)。 返回: list: 表明哪些老鼠会因中毒而死掉的结果列表,'Dead'代表死亡,'Alive'代表存活。 """ # 初始化老鼠状态,默认全部活着 mice_status = ['Alive'] * 10 # 将poisoned_index转换成长度为10的二进制字符串形式 binary_representation = format(poisoned_index, '010b') # 更新老鼠的状态 for i in range(len(binary_representation)): if binary_representation[i] == '1': mice_status[i] = 'Dead' return mice_status if __name__ == "__main__": total_bottles = 1000 poison_bottle_index = int(input("请输入有毒瓶子的序号(0到999之间): ")) result = find_poisoned_bottle(total_bottles, poison_bottle_index) print(f"根据输入,{result.count('Dead')}只老鼠将会死去.") print("具体的老鼠生存情况如下:") for index, status in enumerate(result): print(f"老鼠 {index}: {status}") ``` 这段代码定义了一个函数`find_poisoned_bottle()`用于接收总共有多少个瓶子以及哪个位置上的瓶子是有毒的信息作为参数,并返回一个列表指出哪几只老鼠最终会因此丧生。通过将指定的有毒瓶子编号转化为固定长度的二进制串,每一位上如果是‘1’就标记相应的小白鼠为已故去;反之则保持其初始设定——存活状态不变。最后打印出所有参与实验的小白鼠的具体状况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值