/**
需求分析:
当达到容量上限时 淘汰最久未访问的元素 ---> 双向链表;头节点:最近访问的元素 尾节点:最久未访问的元素
get put 时间复杂度均为O(1) ---> 哈希表
两需求同时满足: 哈希表 + 双向链表
即 双向链表维护各元素访问顺序,哈希表存储双向链表中的节点 两者搭配使用即可满足需求
执行流程:
添加元素:若未达到上限 将元素添加到双向链表头节点,以及哈希表中即可
若达到上限 定位到最久未访问的元素(双向链表尾节点)删除再添加即可 O(1)
访问元素:利用哈希表直接访问O(1) 再将元素移动到头节点即可
操作双向链表中节点时间复杂度也是O(1)的关键: 哈希表中直接存储链表中节点 先在hash表中直接定位到元素O(1) 再操作即可
功能函数:
添加元素到头节点
删除指定节点
移动节点到头部(先删除再重新添加)
*/
class LRUCache {
/**
需求分析:
当达到容量上限时 淘汰最久未访问的元素 ---> 双向链表;头节点:最近访问的元素 尾节点:最久未访问的元素
get put 时间复杂度均为O(1) ---> 哈希表
两需求同时满足: 哈希表 + 双向链表
即 双向链表维护各元素访问顺序,哈希表存储双向链表中的节点 两者搭配使用即可满足需求
执行流程:
添加元素:若未达到上限 将元素添加到双向链表头节点,以及哈希表中即可
若达到上限 定位到最久未访问的元素(双向链表尾节点)删除再添加即可 O(1)
访问元素:利用哈希表直接访问O(1) 再将元素移动到头节点即可
操作双向链表中节点时间复杂度也是O(1)的关键: 哈希表中直接存储链表中节点 先在hash表中直接定位到元素O(1) 再操作即可
功能函数:
添加元素到头节点
删除指定节点
移动节点到头部(先删除再重新添加)
*/
//定义双向链表
public static class DLinkedNode {
int key,value; //相较于传统链表 该场景下需要额外维护key
DLinkedNode prev,next;
DLinkedNode() {};
DLinkedNode(int key, int value) {
this.key = key;
this.value = value;
}
DLinkedNode(int key, int value, DLinkedNode prev, DLinkedNode next) {
this.key = key;
this.value = value;
this.prev = prev;
this.next = next;
}
}
//哈希表
private Map<Integer,DLinkedNode> cache = new HashMap<>();
//最大容量
private final int capacity;
//当前大小
private int size;
//虚拟头节点
private DLinkedNode dummyHead = new DLinkedNode();
//虚拟尾节点
private DLinkedNode dummyTail = new DLinkedNode();
//添加元素到头节点
private void addToHead(DLinkedNode node) {
//将node初步插入到头节点
node.prev = dummyHead;
node.next = dummyHead.next;
//建立node前后的联系
dummyHead.next.prev = node;
dummyHead.next = node;
}
//删除指定节点
private void removeNode(DLinkedNode node) {
node.prev.next = node.next;
node.next.prev = node.prev;
}
//移动节点至头部(先删除 再插入到头节点)
private void moveTohead(DLinkedNode node) {
removeNode(node);
addToHead(node);
}
//初始化容量与虚拟节点
public LRUCache(int capacity) {
this.capacity = capacity;
this.size = 0;
//初始化虚拟节点
dummyHead.next = dummyTail;
dummyTail.prev = dummyHead;
}
public int get(int key) {
//从哈希表中读取元素 再移动至首位
if(cache.get(key) == null) {
return -1;
}
DLinkedNode node = cache.get(key);
moveTohead(node);
return node.value;
}
public void put(int key, int value) {
//DLinkedNode node = new DLinkedNode(key,value); 如果关键字 key 已经存在,则变更其数据值 value
DLinkedNode node = cache.get(key);
if(node != null) {
node.value = value;
moveTohead(node);
return;
}
node = new DLinkedNode(key,value);
//先判断当前存储元素个数 若达到上限则先删除尾节点 再添加
if(size >= capacity) {
//删除尾节点
DLinkedNode Tail = dummyTail.prev;
removeNode(Tail);
cache.remove(Tail.key);
size--;
}
addToHead(node);
cache.put(key,node);
size++;
}
}
/**
* Your LRUCache object will be instantiated and called as such:
* LRUCache obj = new LRUCache(capacity);
* int param_1 = obj.get(key);
* obj.put(key,value);
*/