硬币问题

题目描述:刘汝佳紫书262页

思想:固定长度的最长和最短路

求最长路的记忆化搜索方法

D[i]表示从当前节点i出发到达0的最长路径 注意D[0]必须赋予初始值因为0到0的路径长度为0 不然无法算出正确结果 (代码中把ans改到一个最大值就可以求出相应的最短路)

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;

const int maxn = 100;
int n, s,result;
int Coin[maxn],Vis[maxn],D[maxn];
int min_coin[maxn], max_coin[maxn];
int minv[maxn], maxv[maxn];

int dp(int s)
{
    int &ans = D[s];
    if (ans !=-1)//表示已经算过了
    {
        return ans;
    }
    ans = -(1<<20);//赋予一个不可能算出来的初始值
    for (int i = 1; i <= n; i++)
    {
        if (s >= Coin[i])
        {
            ans = max(ans, dp(s - Coin[i]) + 1);
        }
    }
    return ans;
}

int main() 
{
    scanf("%d%d", &n,&s);
    for (int i = 1; i <= n; i++)
    {
        scanf("%d", &Coin[i]);
    }
    memset(D, -1, sizeof(D));
    D[0] = 0;
    printf("%d ", dp(s));
    system("pause");
    return 0;
}

最短路最长路的递推方法

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;

const int maxn = 10000;
int n, s,result;
int Coin[maxn],Vis[maxn],D[maxn];
int min_coin[maxn], max_coin[maxn];
int minv[maxn], maxv[maxn];

int main() 
{
    scanf("%d%d", &n,&s);
    for (int i = 1; i <= n; i++)
    {
        scanf("%d", &Coin[i]);
    }
    //minv[0] = maxv[0] = 0;
    for (int  i = 1; i <= s; i++)
    {
        minv[i] = maxn;
        maxv[i] = -maxn;
    }

    for (int i = 1; i <= s; i++)
    {
        for (int j = 1; j <= n; j++)
        {
            if (i >= Coin[j])
            {
                minv[i] = min(minv[i], minv[i - Coin[j]] + 1);
                maxv[i] = max(maxv[i], maxv[i - Coin[j]] + 1);
            }
        }
    }
    printf("min: %d  max: %d", minv[s], maxv[s]);

    system("pause");
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值