【AcWing】查找数所在区间(二分模板)

本文详细介绍了二分查找的基本原理和两种常见应用场景:寻找左边界和右边界。通过模板解析,展示了如何在有序数组中高效地找到目标值的区间。同时,给出了使用lower_bound()和upper_bound()函数的C++实现。文章以代码实例的形式讲解了如何解决实际问题,帮助读者深入理解二分查找及其在数组区间定位中的应用。
摘要由CSDN通过智能技术生成

二分模板

前提:有单调性一定可以二分。二分不一定有单调性,即无单调性也可以二分。

  • 寻找左边界(符合性质的第一个位置):
  • 每次二分为 [l, mid] 和 [mid+1, r] 。
while(l<r){
	int mid=l+r >> 1; //+优先级大于>>
	if(check(mid)) r=mid;
	else l=mid+1;
}
  • 寻找右边界(符合性质的最后一个位置):
  • 每次二分为 [l, mid-1] 和 [mid, r]。
while(l<r){
	int mid=l+r+1 >> 1;
	if(check(mid)) l=mid;
	else r=mid-1;
}
  • 取含答案的区间 [l, r]。
  • 确定check函数,确保check(mid)==true时更新操作为r=mid / l=mid
  • 判断在check函数返回true/false情况下,应当如何更新区间[l,r]。
  • check(mid)==true的情况下:
  • ①l=mid。mid更新规则为mid=l+r+1 >> 1;
  • ②r=mid。mid更新规则为mid=l+r >> 1;
  • 结果:保证了while结束时l==r
  • AcWing 二分模板
    AcWing 二分模板

题目
AcWing 数的范围
AcWing 数的范围
代码

#include <bits/stdc++.h>
using namespace std;

const int N=100010;
int n,m;
int q[N];

int main(){
    scanf("%d %d",&n,&m);
    for(int i=0;i<n;i++) scanf("%d",&q[i]);
    for(int i=0;i<m;i++){
        int x;
        scanf("%d",&x);
        //二分查找x的区间左端点
        int l=0,r=n-1; //确定区间范围
        while(l<r){
            int mid=l+r >> 1;
            if(q[mid]>=x) r=mid; //找大于等于x的第一个位置,r等于这个位置
            else l=mid+1;
        }
        if(q[r]==x){
            cout << r << ' ';
            r=n-1;
            while(l<r){
                int mid=l+r+1 >> 1;
                if(q[mid]<=x) l=mid; //往右侧减半,找小于等于x的最后一个数,l等于这个位置
                else r=mid-1;
            }
            cout << l << endl;
        }else cout << "-1 -1" << endl;
    }
    return 0;
}

lower_bound() 与 upper_bound()解法

  • lower_bound():通过二分查找,在指定区域内查找>=目标值的第一个元素。
  • upper_bound():通过二分查找,在指定范围内查找>目标值的第一个元素。
#include <bits/stdc++.h>
using namespace std;

const int N=100010;
int n,m;
int q[N];

void solve(int x) {
    int l = lower_bound(q, q+n, x) - q; //>=x的第一个元素的下标
    int r = upper_bound(q, q+n, x) - q; //>x的第一个元素的下标
    if(q[l] == x) printf("%d %d\n", l,r-1);
    else printf("-1 -1\n");
}

int main(){
    int x;
    cin >> n >> m;
    for(int i = 0; i < n; i ++) {
        cin >> q[i];
    }
    while(m --) {
        cin >> x;
        solve(x);
    }
    return 0;
}

END

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值