自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 收藏
  • 关注

原创 matplotlib数据可视化基础(1)

matplotlib数据可视化基础(1) 1. pyplot基础 1.1创建画布与子图 主要作用是构建一张空白的画布,进行绘制,可以支持一幅图上绘制多个图形 表1-1 创建画布与子图的常用函数 函数名 函数作用 plt.figure 创建一个空白画布,可以指定画布大小、像素 figure.add_subplot 创建并选中子图,可以指定子图行列数和编号 1.2 绘制画布 为画布中增加内容,如标题,坐标轴名称,绘制图形等 表1-2 绘制时的常用函数 函数名 函数作用 p

2021-08-09 11:36:31 172

原创 机器学习sklearn实践——决策树(2)

sklearn实践——决策树(回归树) 2.1 在sklearn中的基本框架 from sklearn.model_selection import train_test_split from sklearn import tree dtcf = tree.DecisionTreeRegressor() # 实例化模型 dtcf = dtcf.fit(x_train, y_train) # 模型的拟合 score = dtcf.score(x_test, y_test) # 模型的评估 2.2 cla

2021-08-08 13:05:54 315

原创 机器学习sklearn实践——决策树(1)

sklearn实践——决策树(分类树) 1.1 基本概念 决策树是一种非参数的监督学习,可以从一系列带有特征和标签的数据中寻找规律,并用树形结构描述这些规律。 1.2 在sklearn中的基本框架 from sklearn.model_selection import train_test_split from sklearn import tree dtcf = tree.DecisionTreeClassifier() # 实例化模型 dtcf = dtcf.fit(x_train, y_train

2021-08-02 19:18:25 369

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除