//建立含有n个元素的小顶堆
void MakeMinHeap(int a[], int n)
{
for (int i = n / 2 - 1; i >= 0; i--)
MinHeapFixdown(a, i, n);
}
//在最小堆中加入新的数据nNum
void MinHeapAddNumber(int a[], int n, int nNum)
{
a[n] = nNum;
MinHeapFixup(a, n);
}
//在最小堆中删除下标为n的元素
void MinHeapDeleteNumber(int a[], int n)
{
swap(a[0], a[n]); //将堆顶元素和下标为n的元素交换
MinHeapFixdown(a, 0, n); //重新调整成小顶堆
}
//加入下标为i的节点,并调整成小顶堆,新加的节点是这颗完全二叉树的最后一个节点,故从下往上调整
void MinHeapFixup(int a[],int i)
{
int j,temp;
temp=a[i];
j=(i-1)/2; //父节点
while(j>=0&&i!=0)
{
if(a[j]<=temp)//比父节点小,符合小顶堆条件,直接退出
break;
a[i]=a[j];//把较大的子节点往下移动,替换它的子节点
i=j; //i变成原父节点的标号
j=(i-1)/2; //j继续上移
}
a[i]=temp;
}
// 从i节点开始调整,需要删除元素的时候是将堆顶元素和最后一个元素交换,需要从堆顶向下调整
void MinHeapFixdown(int a[], int i, int n)
{
int j, temp;
temp = a[i];
j = 2 * i + 1; //j为i的左孩子,因为根节点的标号是0
while (j < n)
{
if (j + 1 < n && a[j + 1] < a[j]) //在左右孩子中找最小的
j++;
if (a[j] >= temp) //左右孩子中最小的都比新加的元素大,不需要调整
break;
a[i] = a[j]; //把较小的子结点往上移动,替换它的父结点
i = j; //i变为原来的左孩子或者右孩子
j = 2 * i + 1; //继续向下
}
a[i] = temp;
}
int main()
{
const int MAXN = 10;
const int k=5;
int a[]={12,3,5,88,-1,7,29,999,24,6};
cout<<"数组中的数据为:"<<endl;
for(int i=0;i!=MAXN;++i)
cout<<a[i]<<" ";
cout<<endl;
MakeMinHeap(a, k);
cout<<"初始小顶堆为:"<<endl;
for(int i=0;i!=5;i++)
cout<<a[i]<<" ";
cout<<endl;
for(int j=k;j!=MAXN;j++)
{
if(a[j]<a[0])
<span style="white-space:pre"> </span>continue;
<span style="white-space:pre"> </span>a[0]=a[j];
<span style="white-space:pre"> </span>MinHeapFixdown(a,0,k);
}
cout<<"最大的"<<k<<"个数为"<<endl;
for(int i=0;i!=k;i++)
cout<<a[i]<<" ";
cout<<endl;
return 0;
}
小顶堆实现求无序数组中的最大k个数
本文介绍了如何利用小顶堆算法找出无序数组中的最大k个数。通过建立小顶堆,逐步调整堆结构,实现对数组元素的高效筛选。在示例代码中,详细展示了小顶堆的构建、添加、删除和调整过程,并最终输出了最大k个数的结果。
摘要由CSDN通过智能技术生成