LeetCode-----第五十三题----- 最大子序和

最大子序和

难度:简单

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:

输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

进阶:

如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。

 

题目解析:

        看到最什么什么的字眼,最先想到的应该是DP。来分析一下本题:

         1.考虑是否为最优解和重叠子问题,明显是的,最大值与前面的累加和相关

          2.写一下状态转换方程:1.f[i] = f[i-1]+arr[i](当f[i-1]>0的情况);

                                                  2.f[i] = arr[i](当f[i-1]<0 && nums[i]>f[i-1]的情况);

          3.初始化状态方程,显然使用一维数组,从第二个数开始,f[0] = arr[0]

 

参考代码:

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        if(nums.size() == 1)
            return nums[0];
        
        int max = nums[0];
        vector<int> f(nums.size());
        f[0] = nums[0];

        for(int i = 1; i < nums.size(); ++i)
        {
            if(nums[i] > f[i-1] && f[i-1] < 0)
            {
                f[i] = nums[i];
            }else{
                f[i] = f[i-1] + nums[i];
            }
            if(max < f[i])
                max = f[i];
        }
        return max;
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值