难度:简单
给定一个整数数组 nums
,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例:
输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
进阶:
如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。
题目解析:
看到最什么什么的字眼,最先想到的应该是DP。来分析一下本题:
1.考虑是否为最优解和重叠子问题,明显是的,最大值与前面的累加和相关
2.写一下状态转换方程:1.f[i] = f[i-1]+arr[i](当f[i-1]>0的情况);
2.f[i] = arr[i](当f[i-1]<0 && nums[i]>f[i-1]的情况);
3.初始化状态方程,显然使用一维数组,从第二个数开始,f[0] = arr[0]
参考代码:
class Solution {
public:
int maxSubArray(vector<int>& nums) {
if(nums.size() == 1)
return nums[0];
int max = nums[0];
vector<int> f(nums.size());
f[0] = nums[0];
for(int i = 1; i < nums.size(); ++i)
{
if(nums[i] > f[i-1] && f[i-1] < 0)
{
f[i] = nums[i];
}else{
f[i] = f[i-1] + nums[i];
}
if(max < f[i])
max = f[i];
}
return max;
}
};