图的应用
生成树的概念
生成树:所有顶点均有边连接在一起,但不存在回路的图
一个图可以有许多可不同的生成树
所有生成树具有以下共同特点:
- 生成树的顶点个数与图的顶点个数相同
- 生成树是图的极小连通子图,去掉一条边则非连通
- 一个有 n n n 个顶点的连通图的生成树有 n − 1 n-1 n−1 条边
- 在生成树中再加一条边必然形成回路
含n个顶点n-1条边的图不一定是生成树
无向图的生成树
最小生成树
最小生成树的概念
构造最小生成树Minimum Spanning Tree
MST性质:
设 N = ( V , E ) N = (V,E) N=(V,E) 是一个连通图,U是顶点集V的一个非空子集。若边 ( u , v ) (u,v) (u,v) 是一条具有最小权值的边,其中 u ∈ U u∈U u∈U , v ∈ V − U v∈V-U v∈V−U ,则必存在一颗包含边 ( u , v ) (u,v) (u,v) 的最小生成树
任何算法都利用了MST的性质
例如:
设 U U U 为 V 1 V_1 V