关于《后浪》的B站弹幕分析总结(四)——Python实现LDA内容主题挖掘及主题可视化

这一步的实现是建立在分词工作已经做好了的基础上,具体方法可以参考我之前的文章,这里不再重复说明。这里介绍两种方法,两种方法都好用,看你习惯哪种了。

一、使用sklearn里面的LatentDirichletAllocation做主题挖掘

from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer #基于TF-IDF的词频转向量库
tf_vectorizer=TfidfVectorizer(stop_words=stoplist,tokenizer=jieba_cut,use_idf=True) #创建词向量模型,这里的jieba_cut是自定义的分词函数
tf=tf_vectorizer.fit_transform(comment_list) #将评论关键字列表转换为词向量空间
from sklearn.decomposition import LatentDirichletAllocation #导入 LDA模型库
n_topics=5 #设置主题个数
lda=LatentDirichletAllocation(n_components=n_topics,max_iter=200,
                               learning_method='online',
                               learning_offset=50.,
                               random_state=0)
lda.fit(tf)#拟合模型

得到下面模型结果

LatentDirichletAllocation(batch_size=128, doc_topic_prior=None,
                          evaluate_every=-1, learning_decay=0.7,
                          learning_method='online', learning_offset=50.0,
                          max_doc_update_iter=100, max_iter=50,
                          mean_change_tol=0.001, n_components=5, n_jobs=None,
                         
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值