一、问题描述
给定一个整数,写一个函数来判断它是否是 3 的幂次方。如果是,返回 true ;否则,返回 false 整数 n 是 3 的幂次方需满足:存在整数 x 使得 n == 3^x
示例1
输入:n = 27
输出:true
示例2
输入:n = 0
输出:false
示例3
输入:n = 45
输出:false
提示:-231 <= n <= 231 - 1
二、解题方法
方法1:除3
使用循环或是递归的方式将 n 不断除于3,判断最后得到的数是否 =1;若在循环的过程中存在余数不为0则表示这个数不是3的幂。
public boolean isPowerOfThree(int n) {
while(n != 0 && n % 3 == 0){
n /= 3;
}
return n == 1;
}
复杂度
- 时间复杂度:O().
- 空间复杂度:O(1)
方法2:
根据提示,n 的范围在 [-2^31,2^31 - 1] 之间,在这个范围内最大的3的幂是 3的19次方,我们只需判断 3^19 % n 是否等于0就可以判断这个数是否是3的幂。
3^19 = 1162261467
public boolean isPowerOfThree(int n) {
return n > 0 && (int)(Math.pow(3,19)) % n == 0;
}
复杂度
- 时间复杂度:O(1)
- 空间复杂度:O(1)