TOJ 2931


题目连接:

http://acm.tzc.edu.cn/acmhome/problemdetail.do?&method=showdetail&id=2931


题目类型:

数论 - 快速模幂


数据结构:


思路分析:

(A1B1 + A2B2 + ... + AHBH) mod M.

既要求此公式 就先必须要化简,

需要知道定理

( a + b ) % m = ( a % m + b % m ) % m

( a ^ b % m ) = ( a % m ) ^ b % m

以此来消除 计算中出现可能溢出的大数字


至于各项中的 ai^bi % m 就利用蒙特哥利算法来解决

最后用 snt 来叠加即可


证明:


源代码:

#include <iostream>
#include <stdio.h>
#include <vector>
using namespace std;

typedef __int64 int64;

int64 _montgomery( int64 a, int64 b, int64 c )
{
    int64  temp = 1;
    
	while( b )
	{
		if( b & 1 )
		{
			temp = ( temp * a ) % c;
		}
		
		b >>= 1;
		a = ( a * a ) % c;
	}
	
	return temp;
}

int main()
{
	int t;
	int64 i, a, b, M, H, snt;
	
	scanf( "%d", &t );
	
	while( t -- )
	{
		snt = 0;
		
		scanf( "%I64d%I64d", &M, &H );
		
		for( i = 0; i < H; i ++ )
		{
			scanf( "%I64d%I64d", &a, &b );
			
			snt += _montgomery( a, b, M );
		}
		
		printf( "%I64d\n", snt % M );
	}
	
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值