SQL数据备份之CREATE TABLE+SELECT子句、select ... into ... from 和 insert into select

本文介绍了在SQL中如何备份数据,特别是针对MySQL数据库。讨论了CREATE TABLE + SELECT子句用于创建新表并复制符合条件的数据,以及INSERT INTO SELECT语句的使用。文章指出MySQL不支持select ... into ... from语法,并提供了正确的使用方法。

问题描述:

某打车公司将驾驶里程(drivedistanced)超过5000里的司机信息转移到一张称为seniordrivers 的表中,他们的详细情况被记录在表drivers 中,正确的sql为?

  • 如果单看这道题的前部分,顺势思维,我会利用MySQL语句这样解决,创建一个新表,把符合一定条件的数据直接 copy 过去。
  • 拿表 salaries 做例子。
# 查看原表
SELECT * FROM salaries
ORDER BY salary;

在这里插入图片描述

  • 现在我想把工资高于 50,000 的原表信息转移到另一张表 salaries1 中,使用 MySQL语句,可以这样做:
CREATE TABLE salaries1 
AS
SELECT * FROM salaries WHERE salary> 50000;

在这里插入图片描述

  • 然而,题目下方有如下选项:
# A
insert into seniordrivers
drivedistanced>=5000 from drivers where
# B
insert seniordrivers (drivedistanced) values from drivers where drivedistanced>=5000
# C
insert into seniordrivers
(drivedistanced)values>=5000 from drivers where
# D
select * into seniordrivers from drivers where drivedistanced >=5000
  • 仔细一看题目,“正确的sql为?”
    在这里插入图片描述

  • 这可难倒作为小白的我了,我之学习了MySQL啊!这个SQL是啥?跟MySQL什么关系?怎么那么像?
    在这里插入图片描述

  • 别慌,别慌!因为我们站在巨人的肩膀上!
    在这里插入图片描述

  • SQL 是用于访问和处理数据库的标准的计算机语言。

  • 这类数据库包括:MySQL、SQL Server、Access、Oracle、Sybase、DB2 等等。

  • 哦哦哦,原来MySQL是一种库,SQL是一种计算机语言!
    在这里插入图片描述

  • MySQL 是最流行的关系型数据库管理系统,在 WEB 应用方面 MySQL 是最好的 RDBMS(Relational Database Management System:关系数据库管理系统)应用软件之一。

  • 最后通过资料的查询与学习,总结一下:SQL语言中备份部分数据可使用 SELECT INTO 语句

  • SELECT INTO从一个表中选取数据,然后把数据插入另一个表中。常用于创建表的备份复件或者用于对记录进行存档。

select * into seniordrivers from drivers where drivedistanced >=5000
  • 上述代码正是所解
  • 当把相同的语句放在MySQL查询中
    在这里插入图片描述
  • 出现了错误:1327 - Undeclared variable: salaries2
  • 未声明变量 salaries2 ,那如果我事先创建一个表 salaries2 呢?能否顺利把数据复制过来?
# 第一步,创建表结构,复制表 salaries
CREATE TABLE salaries2
AS
SELECT * FROM salaries
# 第二步,删除表 salaries2 的数据
DELETE FROM salaries2
# 查看表 salaries2 已经没了数据
SELECT * FROM salaries2

在这里插入图片描述

  • 再来一次
    在这里插入图片描述

  • 依然错误,其实导致这种错误的原因正是 MySQL不支持 select … into … from 这种用法。

  • 其实,在 MySQL也没必要使用 select … into … from ,因为简单的 create 加 select 子句的方法就可以达到了要求!
    在这里插入图片描述

  • 但但但是,在选项上我看到了 insert into from 语句,这又有什么玄机吗?

  • INSERT INTO 语句在MySQL中用于向表格中插入新的行。顺带回忆一下吧!

# 插入单行,所有字段对应需要给出值或者null(字段允许为null的情况)
INSERT INTO salaries2 
VALUE(10008,99999,2000/2/2,2000/5/5);
# 特定字段插入数据
INSERT INTO salaries2 (emp_no,salary)
VALUE(10000,98888);

在这里插入图片描述

  • INSERT INTO SELECT 语句
INSERT INTO salaries3 SELECT * FROM salaries WHERE salary>50000;

在这里插入图片描述

  • 又双提示错误,错误提示表不存在,那如果表存在呢?
    在这里插入图片描述
DELETE FROM salaries2;
INSERT INTO salaries2 SELECT * FROM salaries WHERE salary>50000;

在这里插入图片描述
在这里插入图片描述

总结

SQL语句表是否需要先存在MySQL是否支持
CREATE TABLE+SELECT子句支持
select ... into ... from不支持
insert into select from支持
<think>好的,我现在需要帮助用户在Spark SQL中执行类似传统SQLINSERT INTO ... SELECT操作。首先,我得回忆一下Spark SQL的语法传统SQL的不同之处。用户提到的引用资料里,特别是引用[2]提到可以使用spark.sql函数运行SQL查询,返回DataFrame。这说明用户可能希望通过编程方式执行这样的操作。 传统SQL中的INSERT INTO ... SELECT用于将查询结果插入到现有表中。但是在Spark SQL中,特别是使用DataFrame API时,通常的做法是写入数据时指定模式,比如append模式。例如,用户可能想将查询结果保存到已存在的表中,这时候需要检查Spark的版本配置。 接下来,我需要确认Spark SQL是否支持直接使用INSERT INTO语法。根据Spark的文档,从某个版本开始(可能是Spark 2.3之后),开始支持INSERT INTO语句,但默认可能依赖Hive支持。比如,用户需要确保创建的表是Hive表,而不是临时视图。引用[1][3]提到了Hive metastore的配置,比如JDBC驱动共享,这可能涉及到需要正确配置Spark与Hive的集成,以便支持表操作。 然后,用户可能有不同的存储格式,比如Parquet、ORC等,这时候INSERT INTO的行为可能不同。需要提醒用户注意表的格式分区情况。引用[4]提到分区列的设置,如果表有分区,可能需要指定分区列,或者在写入时动态分区。但动态分区需要配置,比如启用hive.exec.dynamic.partition.mode为nonstrict。 此外,用户可能在使用DataFrame API时更倾向于使用write方法,例如使用mode("append")来追加数据到现有表。这需要目标表已经存在,并且schema兼容。例如,df.write.mode("append").saveAsTable("target_table")。这种情况下,不需要写INSERT INTO语句,而是通过DataFrame的操作实现。 还需要考虑事务支持。Spark SQL(基于Hive)的表可能有ACID事务的支持,但通常需要特定的文件格式,比如Hive事务表,并且配置正确。普通情况下,每次写入都是覆盖或追加,没有细粒度的事务控制,这可能会影响用户的操作方式。 总结可能的步骤:1. 确保目标表是Hive表,已存在。2. 使用INSERT INTO ... SELECT语法在spark.sql()中执行。3. 或者使用DataFrame的写入方法,指定模式为追加。4. 注意分区配置参数,如动态分区。 可能的问题包括表不存在、schema不匹配、分区配置错误等。需要提醒用户检查这些点,并参考Spark的文档版本特性。同时,引用提供的资料中关于spark.sql的用法Hive集成的配置可能对用户有帮助,比如正确设置JDBC驱动共享类加载器,以确保与metastore的交互正常。</think>在 Spark SQL 中实现类似传统 SQL 的 `INSERT INTO ... SELECT` 操作,可以通过以下两种方式实现: --- ### 方法 1:使用 Spark SQL 语法 **步骤**: 1. **创建目标表**(需为 Hive 表,而非临时视图): ```sql CREATE TABLE target_table (id INT, name STRING) USING parquet -- 指定存储格式 ``` 2. **执行插入操作**: ```scala spark.sql(""" INSERT INTO target_table SELECT id, name FROM source_table WHERE age > 20 """) ``` - 要求:Spark 需启用 Hive 支持(启动时配置 `--enableHiveSupport`) - 注意:若目标表有分区,需指定 `PARTITION` 子句或启用动态分区(见下文配置) --- ### 方法 2:使用 DataFrame API **步骤**: 1. **读取源数据**: ```scala val sourceDF = spark.table("source_table").filter("age > 20")
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值