自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3203)
  • 收藏
  • 关注

原创 解析 ‘Entity Relationship Tracking’:利用记忆组件自动记录对话中出现的人名、项目名及其关系演变

例如,当我说“张三是销售部的经理,他正在负责‘星火计划’项目,李四是他的团队成员”,你立刻能构建出张三、李四、销售部和星火计划之间的层次与协作关系。这个主题的核心在于如何让机器像人类一样,在持续的对话中自动识别并记住关键的人名、项目名等实体,理解它们之间错综复杂的关系,并能够追踪这些关系的动态演变。例如,在“张三是销售部的经理”中,需要识别出“张三”和“销售部”之间存在“任职于”的关系,并且“张三”是“经理”这个职位。在我们的系统中,RE模块将是理解对话中人与人、人与项目、项目与项目之间复杂关联的核心。

2026-01-01 19:23:40 412

原创 深入 ‘Context Pruning’:如何利用语义相似度自动剔除记忆中那些不相关的‘废话’以节省 Token

传统的信息检索和过滤,往往依赖于关键词匹配。例如,如果用户问“告诉我关于AI的最新进展”,我们可能会在知识库中搜索包含“AI”和“进展”的文档。“人工智能”与“AI”意思相同,但关键词匹配可能无法识别。“Apple”可能指公司,也可能指水果,关键词匹配无法区分语境。用户可能用完全不同的词汇表达相同的意图,例如“推荐一些能改善睡眠的APP”和“我想找个助眠软件”。在LLM时代,我们拥有更强大的工具来理解语言的深层含义——语义相似度。它超越了字面匹配,能够捕捉词语、句子乃至段落之间的意义关联。

2026-01-01 19:22:32 443

原创 什么是 ‘Episodic vs Semantic Memory’?构建一个既能记得具体细节、又能总结抽象规律的智能体

各位同仁,女士们,先生们,欢迎来到今天的讲座。我们今天将深入探讨人工智能领域中一个至关重要且引人入胜的话题:智能体的记忆系统。具体来说,我们将聚焦于两种基本但截然不同的记忆类型——,并探讨如何构建一个智能体,使其能够有效整合这两种记忆,从而既能记住具体的经历细节,又能归纳抽象出普遍的规律。在构建真正智能的系统时,我们常常会发现,仅仅依靠大规模的数据训练和强大的计算能力是不够的。一个智能体需要像人类一样,能够从单个事件中学习,形成普遍的知识,并利用这些知识来理解新情况,甚至预测未来。

2026-01-01 19:21:28 371

原创 解析 ‘Memory Consolidation’:在 Agent 闲时(Off-peak),如何利用 LLM 自动整理并归纳旧的对话日志?

将冗长、详细的对话内容提炼成简洁、准确的核心要点,捕捉对话的主题、关键问题、解决方案和最终决策。策略:如果单个对话过长,可以将其分割成若干小段,分别摘要,然后将这些小段摘要合并或再次摘要。对于非常长的对话,可以采取递归摘要的方式,即先对原文进行初步摘要,然后将摘要作为输入再次进行摘要,直至达到所需长度和粒度。可以引导LLM关注对话中特定方面的信息,例如“总结用户遇到的主要问题”或“总结智能体提供的解决方案”。关键在于清晰地指示LLM输出的格式和内容。import os。

2026-01-01 19:20:22 348

原创 利用 ‘Vectorstore Retrievable Memory’:如何实现跨会话(Cross-session)的全局偏好召回?

全局偏好是那些不局限于当前会话,而是贯穿用户整个使用周期的、相对稳定的兴趣、设置或行为模式。"用户总是喜欢深色模式","用户对户外运动有浓厚兴趣","用户偏好接收每周邮件摘要"。"我今天想看一部喜剧片" 是临时上下文;"我通常喜欢看科幻片" 是全局偏好。‘Vectorstore Retrievable Memory’ 为构建具有长期记忆和个性化能力的智能系统开辟了新的道路。通过将用户偏好转化为语义向量并存储在高效的向量数据库中,我们能够实现跨会话的智能召回,从而提供更加贴心、个性化的用户体验。

2026-01-01 19:19:10 545

原创 解析 ‘LLM-as-a-judge’:如何编写一套可靠的 Prompt 让 GPT-4 为你的 Llama-3 输出打分?

各位编程爱好者、AI工程师们:大家好!欢迎来到今天的技术讲座。今天,我们将深入探讨一个在当前AI领域备受关注且极具实用价值的话题:如何利用“LLM-as-a-judge”范式,特别是如何编写一套可靠的Prompt,让强大的GPT-4模型为我们的Llama-3模型输出进行打分和评估。随着大语言模型(LLM)技术的飞速发展,我们拥有了Llama-3、GPT-4等一系列令人惊叹的模型。但随之而来的挑战是:我们如何有效地评估这些模型的性能?

2026-01-01 19:17:54 331

原创 什么是 ‘Pairwise Evaluation’?为什么让 LLM 在两个备选答案中选一个比直接打分更客观?

为了进行有效的成对比较,评审员需要明确的评估标准。事实准确性 (Factuality):信息是否真实、准确。完整性 (Completeness):是否全面回答了所有问题。清晰度与连贯性 (Clarity & Coherence):语言是否易懂,逻辑是否清晰。简洁性 (Conciseness):是否有冗余信息。帮助性 (Helpfulness):是否真正解决了用户的问题。安全性 (Safety):是否包含有害、偏见或不当内容。通过这些具体标准,评审员的判断过程变得更加结构化和可解释。

2026-01-01 19:16:44 530

原创 深入 LangSmith 的 ‘Custom Evaluators’:如何针对业务指标(如代码正确率)编写自动化的评估逻辑?

LangSmith的Custom Evaluators为开发者提供了一座桥梁,将特定的业务逻辑和高质量的评估标准无缝集成到LLM开发流程中。它们是实现LLM应用生产级质量和可靠性的关键,使得我们能够从主观、低效的人工评估转向客观、可扩展的自动化评估。随着LLM能力边界的不断拓展,以及其在各行各业应用的深入,对评估复杂性和准确性的要求将持续提高。自定义评估器将扮演越来越重要的角色,帮助我们构建更智能、更可靠、更贴近业务需求的LLM应用。

2026-01-01 19:15:34 432

原创 解析 ‘Data Drift’ 监测:当真实用户的输入偏离了测试集时,如何通过 LangSmith 及时发出预警?

通过LangSmith提供的强大追踪、评估和监控能力,结合我们自定义的特征工程和统计检测逻辑,我们能够构建一个及时、有效的预警系统。这不仅能帮助我们维护模型的性能,更能加深我们对真实用户行为模式的理解,为LLM的持续改进提供宝贵的数据洞察。我们将创建一个Python函数,它接收生产运行的输入(以及可能的输出),提取其特征,然后与我们存储在LangSmith基线数据集中的特征进行比较,计算出漂移指标。将漂移视为一种异常。然而,在大型语言模型(LLM)的世界里,数据漂移的含义被赋予了更深层次的复杂性。

2026-01-01 19:14:33 314

原创 什么是 ‘Feedback Loop’?如何通过收集用户的‘点赞/点踩’数据自动驱动模型提示词的微调?

从最广泛的意义上讲,反馈循环是一种系统机制,其中一个过程的输出会作为输入,影响该过程未来的行为。这个概念并非AI领域独有,它存在于自然界、工程学、经济学乃至社会学中。系统/过程 (System/Process):执行某些操作的核心实体。输出 (Output):系统行为的结果。传感器/观察者 (Sensor/Observer):测量或收集输出数据。比较器/评估器 (Comparator/Evaluator):将观察到的输出与期望的目标进行比较或评估。

2026-01-01 19:13:33 437

原创 解析 ‘Cost Profiling’:如何精准识别哪一个 Agent 节点是‘吞金兽’并进行逻辑优化?

各位同仁,各位技术爱好者,大家好!欢迎来到今天的专题讲座。今天我们将深入探讨一个在分布式系统和云原生架构中至关重要的话题——“成本画像”(Cost Profiling),特别是如何精准识别我们系统中的“吞金兽”Agent节点,并进行行之有效的逻辑优化。在当今瞬息万变的数字化时代,我们的系统变得越来越复杂,由无数微服务、容器、无服务器函数以及各种代理(Agent)节点构成。这些Agent节点可能负责数据采集、消息处理、计算任务、API网关等等。它们协同工作,支撑着企业的核心业务。

2026-01-01 19:12:32 429

原创 深入 ‘Regression Testing’ 流程:在发布新版 Graph 前,如何自动运行 1000 个案例确保没有功能倒退?

为了让测试案例易于管理、版本控制和自动化执行,我们采用 JSON 或 YAML 格式来定义它们。name: 测试案例的唯一标识。: 对测试案例的简要描述。setup_data: 用于初始化图数据的 Gremlin 或 Cypher 语句列表。query: 要执行的图查询语句。: 预期从查询中返回的结果。language: 查询语言类型(例如 "gremlin", "cypher")。type: 测试类型(例如 "functional", "performance", "negative")。

2026-01-01 19:11:20 332

原创 什么是 ‘Trace Masking’?在收集生产环境数据时,如何自动模糊掉其中的个人敏感信息(PII)?

直译为“追踪模糊”,是指在分布式追踪数据(Traces)中,识别并对潜在的个人敏感信息(PII)进行系统性模糊、匿名化或移除的过程。其目的是在保留追踪数据的调试和分析价值的同时,最大限度地降低 PII 泄露的风险。我们为什么特别关注 Trace 数据?因为分布式追踪系统旨在记录一个请求从开始到结束在不同服务间流转的完整路径,以及每个服务内部的操作细节。HTTP 请求/响应体:包含用户提交的表单数据(如注册信息、订单详情)、API 响应中的用户信息。URL 参数和路径段。

2026-01-01 19:10:13 196

原创 解析 ‘Latency Decomposition’:详细拆解 RAG 请求中每一毫秒的去向(网络、检索、推理)

在构建和优化基于检索增强生成(RAG)系统时,延迟(Latency)无疑是衡量用户体验和系统效率的关键指标。一个RAG请求从用户发出到接收到最终响应,其背后涉及一系列复杂的交互和计算,每一毫秒的消耗都可能影响整体表现。深入理解并精确拆解RAG请求中的延迟,即进行“延迟分解”(Latency Decomposition),是我们进行性能瓶颈分析、系统优化以及资源调配的基础。

2026-01-01 19:09:02 394

原创 利用 ‘Online Sampling’:如何在大规模流量中抽样 1% 的数据进行深度的专家人工审核?

在线抽样的核心思想是为每个流入的数据项(或一组相关数据项)生成一个“随机值”,然后根据这个随机值与预设的阈值进行比较,从而决定是否抽样。最常用的技术是基于哈希函数的抽样,因为它天然具备一致性、分布式和伪随机性。在线抽样是处理大规模实时流量的基石技术之一,它使我们能够在数据洪流中,精准地捕获“一粟”精华,用于更高价值的专家人工审核。哈希抽样以其分布式一致性、无状态和高效性,成为实现固定比例抽样最可靠的选择。通过分层抽样,我们能满足更复杂的业务需求;而自适应抽样则提供了在动态环境中维持精确抽样率的强大能力。

2026-01-01 19:01:49 520

原创 解析 ‘Chain Parallelization’:利用 `RunnableParallel` 将原本 30 秒的任务缩短至 5 秒的实战技巧

通过本次讲座和实战案例,我们深入探讨了“链式并行化”的核心思想,并通过构建模式,成功地将一个 30 秒的复杂任务缩短至 5 秒。这证明了在多核时代,合理地识别并行机会并运用恰当的并发工具,能够为应用程序带来巨大的性能提升。理解任务的依赖关系,精确地分解可并行和必须串行的部分,并有效地管理线程资源和错误,是驾驭链式并行化的关键。这样的模式,正是为了简化这种复杂性而生,它允许开发者以更清晰、更结构化的方式来表达和执行并行任务链,从而解锁应用的并行潜力。

2026-01-01 19:00:42 400

原创 什么是 ‘Streaming Middleware’:如何在 Fast API 中实现兼容 LangChain 流式输出的 WebSocket 封装?

在 LangChain 的流式输出中,我们可能会收到不同类型的块:文本、工具调用、错误信息等。为了让客户端能够清晰地理解和处理这些信息,我们需要定义一个统一的、结构化的数据格式。JSON 是一个理想的选择。我们可以定义一个通用的 WebSocket 消息结构,包含type字段来指示消息类型,以及data字段来承载实际内容。字段类型描述示例值typestr消息类型(e.g.,tool_callerrorenddatadict实际的消息内容,格式取决于typestatusstr。

2026-01-01 18:59:32 618

原创 深入 ‘Prompt Compression’:利用长文本压缩技术将 10k Token 的上下文精炼到 2k 且不丢失信息

当上述方法仍不足以达到目标 token 数,或者需要更高级的语义理解和重构时,可以引入小型 LLM 或专门的摘要模型。3.4.1 使用小型 LLM 进行分块摘要 (Chunk Summarization with Smaller LLMs)策略是:将 10k token 文本分割成若干个小块(例如,每个块 2k token),然后用一个较小的、成本较低的 LLM 对每个小块进行摘要,将每个 2k token 块压缩到 500 token 甚至更少。最后,将所有摘要合并起来,形成一个更精炼的文本。

2026-01-01 18:58:30 399

原创 解析 ‘Local Embedding Caching’:如何利用 Redis 缓存已生成的向量,避免对同一段话进行重复计算?

文本嵌入是一种将文本(如单词、句子、段落甚至文档)映射到低维或高维实数向量空间的技术。这些向量捕捉了文本的语义信息和上下文关系,使得语义上相似的文本在向量空间中距离更近。例如,“猫”和“小猫”的嵌入向量会比“猫”和“汽车”的向量更接近。常用的嵌入模型包括:Word2Vec, GloVe, FastText (基于统计和浅层神经网络)。BERT, RoBERTa, XLNet (基于 Transformer 架构,能理解词语在不同上下文中的含义)。

2026-01-01 18:57:27 529

原创 什么是 ‘Token Rate Limiting’ 的自适应策略?当达到 API 上限时,如何实现带权重的队列等待?

自适应令牌桶限流与带权重队列等待策略,为API管理提供了一套强大而灵活的工具。它们共同应对了静态限流的不足,在保障系统稳定性的同时,优化了资源利用率,并提升了用户体验。在分布式系统中实现这些策略虽然面临挑战,但通过结合高性能的共享存储和完善的监控告警机制,我们可以构建出高可用、高性能的API流量管理系统。未来的发展方向将更多地聚焦于利用AI和机器学习技术,实现更智能的预测性限流和更精细化的流量调度。

2026-01-01 18:56:17 226

原创 解析 ‘Toxic Content Detection’:在多模态 Agent 中如何同时审核生成的图片、文字与音频?

在深入技术细节之前,我们首先需要明确“毒性内容”的范畴。它远不止于粗俗或冒犯性言论,更涵盖一切可能对用户、社会造成潜在危害、误导或歧视的内容。在多模态语境下,毒性内容的表现形式更加复杂,可能存在于单一模态中,也可能通过模态间的组合产生隐蔽的危害。文本模态毒性内容:针对特定群体(种族、性别、宗教、性取向等)的歧视、侮辱、威胁或煽动暴力。针对个人或群体的反复、恶意攻击、恐吓或贬低。直接或间接鼓励、教唆他人实施暴力行为。露骨的性描述、性骚扰言论,或未成年人色情内容。鼓励、美化自残或自杀行为的内容。

2025-12-31 19:29:51 699

原创 探讨 ‘Ethics in AI Agents’:如何为 Agent 设置“价值观底线”,防止其在执行任务时产生歧视行为

在AI语境下,歧视通常指智能体基于某些受保护属性(如种族、性别、年龄、宗教、国籍、残疾状况等)对不同个体或群体做出不公正、不平等的决策或待遇。直接歧视 (Direct Discrimination):智能体直接使用受保护属性作为决策依据。例如,一个贷款审批模型直接基于申请人的种族来决定是否批准贷款。间接歧视 (Indirect Discrimination):智能体使用与受保护属性高度相关的代理特征(proxy features)进行决策,导致结果上对特定受保护群体产生不利影响。

2025-12-31 19:28:42 777

原创 解析‘智能客服图谱’:如何利用 LangGraph 构建支持‘处理进度查询’、‘投诉转接’的闭环流程?

LangGraph的核心是StateGraph。它允许我们定义一个状态对象,并在图中的不同节点之间传递和修改这个状态。首先,我们定义一个AgentState,它将作为整个LangGraph工作流的共享状态。这个状态需要包含所有可能在会话中使用的信息。import os# 确保设置了OpenAI API Key"""LangGraph的AgentState定义,用于在各个节点之间传递和修改。"""

2025-12-31 19:21:53 483

原创 什么是‘代码辅助 Agent’:构建一个具备自主运行单元测试、发现 Bug 并自我修复能力的开发辅助器

各位开发者,下午好!今天,我们齐聚一堂,探讨一个既充满挑战又极具前景的话题——构建一个具备自主运行单元测试、发现Bug并自我修复能力的开发辅助器,我们称之为‘代码辅助Agent’。想象一下,您的开发流程中不再仅仅是CI/CD流水线,而是一个真正能够理解代码、诊断问题、甚至主动提出并应用修复方案的智能伙伴。这不仅仅是效率的提升,更是软件开发范式的革新。作为一名在编程领域深耕多年的实践者,我深知从手工测试、调试到自动化测试、静态分析的每一步演进都为我们带来了巨大的价值。

2025-12-31 19:20:50 379

原创 解析‘电商导购 Agent’:利用多模态视觉能力根据用户上传的照片推荐最相似的商品?

我们今天详细探讨了如何构建一个基于多模态视觉能力的电商导购 Agent,从核心的特征提取、大规模向量索引,到智能的相似性搜索与推荐逻辑,再到多模态查询的融合与实践挑战。这个 Agent 不仅是技术创新的体现,更是对未来购物体验的一次深刻重塑。它赋予了电商平台“看图识物”的能力,让用户的购物之旅变得前所未有的便捷与直观。虽然前方仍有诸多挑战,但随着AI技术的飞速发展,我们有理由相信,这样一个智能、高效、个性化的电商导购 Agent 将会成为未来电商平台的标配,彻底改变我们发现和购买商品的方式。

2025-12-31 19:18:56 564

原创 什么是‘科研助手’:利用 LangChain 自动爬取 Arxiv 论文、生成摘要并提取核心公式的工程方案

各位同仁,各位对科研自动化充满热情的工程师们:欢迎大家来到今天的讲座。我是今天的分享者,非常荣幸能与大家探讨一个在当前信息爆炸时代极具价值的话题:如何构建一个智能的“科研助手”,利用最新的大语言模型(LLM)与LangChain框架,自动化地从Arxiv等学术平台爬取论文、生成高质量摘要,并精准提取论文中的核心数学公式。在座的各位,想必都曾有过这样的经历:面对海量的学术论文,如何在最短的时间内筛选出与自己研究方向最相关的文献?如何在不深入阅读全文的情况下,快速把握论文的核心思想和关键贡献?

2025-12-31 19:17:48 807

原创 解析‘多语言翻译 Agent’:如何利用‘翻译-反向翻译-修正’的循环链实现专家级的翻译质量?

通过“翻译-反向翻译-修正”的循环链,结合先进的 LLM 技术和精密的工程设计,我们能够构建出实现专家级翻译质量的多语言翻译 Agent。这不仅是技术上的突破,更是跨文化交流和全球信息流通的强大推动力,它将帮助我们更好地理解彼此,连接世界。

2025-12-31 19:16:38 478

原创 探讨‘游戏 NPC 智能体’:利用长短期记忆与性格模板构建具备持续演进能力的数字角色

各位同仁,各位对游戏人工智能充满热情的开发者们,下午好!今天,我们齐聚一堂,共同探讨一个令人振奋的前沿话题:如何利用先进的机器学习技术,特别是长短期记忆(LSTM)网络,结合精妙的性格模板,来构建具备持续演进能力的数字角色,也就是我们游戏中的非玩家角色(NPC)智能体。在座的各位,想必都曾对游戏中那些重复性高、缺乏真实感的NPC感到过一丝遗憾。他们像是程序设定好的提线木偶,在固定的路径上巡逻,说着一成不变的台词,他们的行为模式一眼便能看穿。这种缺乏生命力的角色,无疑是沉浸式游戏体验的一道鸿沟。

2025-12-31 19:15:34 596

原创 逻辑题:如果一个 Agent 在执行循环图时陷入了‘无限重试’,你该如何设计通用的逃逸机制?

通过多维度的观测、精细化的决策与灵活的行动策略,我们能够构建出即使在复杂、动态且充满不确定性的环境中也能稳定运行的Agent系统,确保其在面临困境时,能够优雅地、智能地寻找出路。因此,设计一套通用、健壮且智能的逃逸机制,使Agent能够识别并优雅地脱离这种无限重试的困境,是构建高可靠、高弹性系统的关键一环。这个分层、多维度的逃逸机制,通过整合时间、次数、状态和外部监控等多种维度,为Agent构建了一道坚固的防线,使其在面对循环图中的无限重试困境时,能够有策略、有层次地智能应对。不是所有错误都值得重试。

2025-12-31 19:14:23 468

原创 面试必杀:详细描述从用户提问,到向量召回、Prompt 注入、LLM 推理、再到工具调用的全链路数据流转

工具是预先定义好的函数或API接口,它们封装了具体的业务逻辑或外部服务调用。

2025-12-31 19:13:21 587

原创 深度挑战:如果要在边缘设备(如路由器)上运行 LangChain 逻辑,你会如何精简其依赖库与内存占用?

在路由器等资源受限的边缘设备上运行LangChain,无疑是一项充满挑战但极具前景的任务。它要求我们跳出传统服务器端开发的思维定式,深入剖析框架与依赖的每一个环节,进行极致的精简与优化。通过按需引入、替换重构、预计算、异构卸载以及Python运行时优化,我们能够将LangChain的核心功能带到离用户更近的地方,解锁低延迟、高隐私的边缘智能应用场景。未来的发展将围绕更小巧、更高效的语言模型、更精简的推理框架以及更强大的边缘硬件加速展开,共同推动边缘AI的普及与创新。

2025-12-31 19:12:09 617

原创 面试必杀:什么是 ‘Self-Reflection’ 模式?如何在不增加 API 调用次数的前提下优化其思考路径?

在人工智能领域,特别是大型语言模型(LLM)的语境下,Self-Reflection(自我反思)模式是指模型在生成初步输出后,能够对其自身的输出进行批判性评估、识别潜在错误、不准确性或不足之处,并基于这种内部评估来修正或改进其初始输出的能力。简而言之,它不再仅仅是一个“生成器”,而是一个“生成器”加上一个“批评家”再加一个“修订者”的复合体。为什么我们需要它?LLMs即便在训练有素的情况下,也可能出现“幻觉”(hallucinations)、逻辑错误或未能完全理解复杂指令的情况。

2025-12-31 19:10:58 468

原创 深度挑战:设计一个具备‘自我学习能力’的 Agent,它能根据过去的失败案例自动调整未来的 Prompt 策略

各位同仁,各位技术爱好者,大家好!今天,我们齐聚一堂,共同探讨一个充满挑战与机遇的议题:如何设计一个具备“自我学习能力”的Agent,使其能够根据过去的失败案例,自动调整未来的Prompt策略。在大型语言模型(LLM)日益普及的今天,Prompt工程的重要性不言而喻。然而,手动调整Prompt不仅效率低下,而且难以捕捉复杂场景下的细微差别。一个能够自主学习并优化的Agent,无疑将极大地提升我们与LLM交互的效率和效果。

2025-12-31 19:09:50 627

原创 逻辑题:解析‘温度值(Temperature)’对 Agent 执行确定性工具(如计算器)时的致命影响

一个智能体,简单来说,是一个能够感知环境、进行思考、并根据思考采取行动的实体。大型语言模型(LLM):这是 Agent 的“大脑”,负责理解指令、进行推理、规划行动以及生成响应。工具(Tools):这是 Agent 的“手脚”,是 Agent 能够与外部世界交互并执行特定任务的接口。例如,计算器、搜索引擎、数据库查询工具、代码解释器、API调用器等。记忆(Memory):存储 Agent 过去交互的上下文,以便在后续步骤中保持一致性和连贯性。规划与反思(Planning & Reflection)

2025-12-31 19:08:36 565

原创 面试必杀:对比 LangGraph 与传统 DAG 工作流(如 Airflow)在处理‘概率性输出’时的核心差异

自动化内容生成与审核流程。

2025-12-31 19:07:34 502

原创 深度探讨:随着 LLM 推理能力的指数级提升,LangChain 这类编排框架是否会被整合进模型内部?

各位同仁,下午好。今天,我们齐聚一堂,探讨一个在当前AI领域引发广泛思辨的议题:随着大型语言模型(LLM)推理能力的指数级提升,像LangChain这类旨在编排LLM交互的框架,其未来走向何方?它们是否会被整合进模型内部,成为LLM固有的能力之一?作为一名在编程领域摸爬滚打多年的实践者,我深知技术演进的规律并非简单的替代,更多是融合与重塑。今天,我将从技术架构、实际应用、发展趋势等多个维度,深入剖析这个问题,并辅以代码示例,力求为大家呈现一个全面而严谨的视角。

2025-12-31 19:06:24 445

原创 终极思考:当 Agent 可以编写并运行代码来修改自己的源代码时,我们该如何保持对其行为的可控性?

展望未来,一个能够自我修改源代码的Agent,无疑代表着人工智能领域一个激动人心的前沿。它蕴含着巨大的潜力和机遇,能够加速创新,解决人类面临的诸多挑战。然而,这种能力也伴随着前所未有的风险。我们必须以最高的警惕性和最严谨的工程实践来应对。通过构建多层、纵深防御的技术架构,结合严格的流程管理、伦理考量和法律框架,我们才能确保这些强大的智能实体始终在人类的掌控之中,为人性服务,而非成为无法预测的威胁。这是一项持续的挑战,需要我们所有人的智慧和共同努力。

2025-12-31 19:05:18 427

原创 解析 ‘Iterative Refinement’:如何利用 Agent 模式实现高质量的长文撰写与代码自动审查?

迭代精炼与智能体模式的融合,为我们提供了一个前所未有的强大框架,以应对高质量长文撰写和代码自动审查等复杂任务的挑战。通过将宏大目标分解为可管理的子任务,赋予专业智能体以自主性和协作能力,并辅以持续的反馈与优化循环,我们能够构建出比以往任何时候都更加智能、高效和可靠的自动化系统。这不仅是技术进步的体现,更是我们走向更高生产力、更高质量创作与工程实践的关键路径。通过不断探索和完善这一范式,我们必将推动内容创作和软件工程迈向新的高度。

2025-12-30 18:03:53 694

原创 解析 `Ollama` 与 LangChain 的集成:如何在本地消费级 GPU 上跑通完整的 Agent 流程?

现在,我们来构建一个完整的LangChain Agent。这个Agent将能够利用外部工具(如搜索引擎)来获取信息,并根据获取的信息完成特定的任务。我们将实现一个“研究并总结”的Agent。任务:让Agent研究“人工智能在气候变化中的应用”,并总结其主要方面。我们将使用作为我们的搜索引擎工具。import os# 确保DuckDuckGoSearchRun可用,无需API密钥# LangChain Agent需要一个工具列表tools = [Tool(

2025-12-30 18:02:50 586

原创 什么是 ‘Quantization’ (GGUF/EXL2)?解析量化后的模型对 LangChain 复杂推理能力的损耗阈值

量化,从根本上说,是一种降低数值精度的技术。在深度学习领域,它指的是将模型中的权重(weights)和/或激活值(activations)从高精度浮点数(如 32 位浮点数 FP32 或 16 位浮点数 FP16/BF16)转换为低精度表示(如 8 位整数 INT8,甚至 4 位或 2 位整数)。为什么我们要这么做?这是最显而易见的优势。一个 FP32 的数值需要 4 字节,FP16 需要 2 字节。如果将它们量化到 INT4,则一个数值只需要 0.5 字节。

2025-12-30 18:01:46 977

AI智能PHP版文件夹翻译器

PHP版文件翻译器,可递归翻译指定文件夹下所有文件,默认使用的是免费版Gemini 2.0 flash。key需自行获取,修改$endpoint = 'https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=XXX';XXX为自己的key即可。如需修改提示词,更改$prompt。默认是将扫描文件夹中.markdown文件的内容翻译成英文,如需翻译其他类型,在提示词中明确指定即可。建议文件量大的话不要浏览器运行,在命令行中运行不会中断

2025-11-11

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除