- 博客(3300)
- 收藏
- 关注
原创 什么是 ‘Semantic Routing for RAG’:利用分类节点根据用户问题类型定向分配不同的知识源
语义路由,简单来说,是一种智能决策机制,它能够根据用户查询的。
2026-01-06 19:49:12
389
原创 探讨 ‘Memory-augmented Retrieval’:利用历史对话的 Checkpoint 作为查询权重,提升检索的相关性
记忆增强检索代表了RAG技术向更智能、更人性化交互迈进的关键一步。通过将历史对话Checkpoint作为查询的权重,我们赋予了检索系统“记忆”和“上下文理解”的能力,使其能够超越当前查询的字面意义,捕捉用户意图的深层演变。虽然仍面临计算成本、权重优化和评估等挑战,但其在提升多轮对话系统相关性和用户体验方面的巨大潜力是毋庸置疑的。随着技术的不断进步,我们有理由相信,记忆增强检索将成为构建下一代智能交互系统的核心技术之一。
2026-01-06 19:48:08
560
原创 解析 ‘Interrupt-driven Design’:如何在复杂的长任务中设计最少干扰的人类确认节点?
长任务(Long-running Task),顾名思义,是指那些需要较长时间才能完成的计算或操作。执行时间从几秒到几小时不等,远超用户的即时响应预期。可能消耗大量的CPU、内存、磁盘I/O或网络带宽。通常可以分解为多个顺序或并行的子步骤,每个步骤可能有其自身的成功或失败条件。完成时间可能因数据量、网络状况、外部服务响应等因素而波动。往往涉及核心业务逻辑、数据一致性或系统状态的重大变更。典型应用场景:将大量数据从一个数据库迁移到另一个,或在不同系统间同步数据。
2026-01-06 19:46:50
442
原创 什么是 ‘Interactive State Editing’:允许人类直接在 Web 界面上修改 Agent 的‘潜意识’(中间状态)
各位来宾,各位技术同仁,大家好!今天,我将和大家深入探讨一个在人工智能,特别是Agent(智能体)领域日益重要且充满潜力的概念——,直译过来就是“交互式状态编辑”。这个概念的核心思想是:允许人类用户直接在Web界面上,修改一个Agent的“潜意识”——即其内部的中间状态。在当今AI快速发展的时代,我们正从简单的工具走向能够自主感知、决策和行动的智能体。然而,这些Agent的复杂性也带来了一个挑战:它们的内部运作往往像一个黑箱,难以理解、调试和控制。
2026-01-06 19:45:45
600
原创 深入 ‘Steering the Agent’:利用输入反馈实时改变正在运行中的 Graph 权重,实现‘人机共驾’
例如,在自动驾驶中,驾驶员说“走这条路”、“避开那个路口”、“慢一点”。例如,用户点击“我喜欢这个结果”、“下次请优先考虑A选项”。例如,驾驶员手动干预方向盘、刹车,以纠正自动驾驶系统的行为。例如,传感器检测到前方有障碍物、交通灯变红、天气突变。例如,某个决策导致了错误、效率低下或安全风险。这些反馈携带着有价值的信息,指示着代理当前行为的“好”与“坏”,或指明了“期望”的方向。“Steering the Agent”通过实时输入反馈动态调整图权重,为实现真正意义上的人机共驾提供了强大而灵活的机制。
2026-01-06 19:44:27
444
原创 解析 ‘Human Feedback Loops’:如何将人类的纠错动作自动转化为微调 Agent 提示词的训练样本?
各位同仁、各位专家、各位编程爱好者:大家好!今天,我们齐聚一堂,共同探讨一个在人工智能时代日益核心且极具挑战性的话题:如何将人类的纠错动作,这一宝贵的智慧结晶,自动转化为微调AI Agent提示词的训练样本。在Agent逐渐成为主流的当下,它们承担着越来越复杂的任务,从自然语言处理到代码生成,从数据分析到自动化决策。然而,Agent的智能并非一蹴而就,它们也需要学习,需要纠正,而人类的反馈正是这学习过程中最关键的一环。传统的机器学习模型依赖于大规模的静态数据集进行训练。
2026-01-06 19:43:20
569
原创 什么是 ‘Time Travel Debugging for UX’:允许用户点击‘撤销’,让 Agent 状态回退到任意历史节点
时间旅行调试,最初是软件开发领域的一个强大技术。它允许开发者记录程序的完整执行历史——包括内存状态、CPU寄存器、I/O操作等——然后像播放录像一样回放这段历史,甚至可以暂停、倒退、快进,并在任何时间点检查程序的状态。这对于发现难以复现的并发问题、内存泄漏、逻辑错误等至关重要。
2026-01-06 19:42:05
335
原创 解析 ‘Progressive Revelation’:如何在图执行过程中,分阶段向用户展示 Agent 的思考进度?
对于一个基于大型语言模型(LLM)的 Agent 而言,其“思考”并非人类意义上的意识活动,而是一系列结构化的决策、规划、执行和反思过程。Agent 接收用户请求,理解其意图,并将其分解为一系列可执行的子任务。根据当前子任务的需求,从可用的工具集中选择最合适的工具。工具可以是搜索、代码解释器、API 调用等。为选定的工具生成正确的输入参数,并执行工具。接收工具执行结果,并对其进行分析,判断是否达到预期,或是否需要进一步行动。基于观察结果,评估当前进度,调整后续计划,或修正错误。
2026-01-06 19:41:00
514
原创 深入 ‘Dynamic Tool Approval’:如何针对高风险工具实现‘仅限本次调用’的人工授权逻辑?
各位同仁,下午好!今天,我们将深入探讨一个在自动化和人工智能日益普及的时代背景下,至关重要的安全与治理话题——“动态工具授权”。特别是,我们将聚焦于如何针对那些具有高风险的操作,实现一种精细到“仅限本次调用”的人工授权逻辑。随着AI代理、自动化脚本和复杂系统在我们的日常运营中扮演越来越重要的角色,它们被赋予了前所未有的能力去调用各种工具,执行从数据分析到基础设施管理乃至财务交易的各项任务。这种能力固然带来了效率的飞跃,但也伴随着巨大的潜在风险。
2026-01-06 19:39:47
567
原创 解析 ‘Collaboration State Visualization’:如何实时渲染 LangGraph 的动态执行路径给终端用户?
通过将LangGraph的强大状态管理与实时Web技术相结合,我们成功构建了一个能够透明化智能体工作流的系统。这种“Collaboration State Visualization”不仅极大地提升了开发者的调试效率,也让终端用户能够直观地理解智能体的决策过程和内部状态演变。从后端事件捕获、到实时事件传输,再到前端的动态图渲染,每一个环节都至关重要。随着AI智能体变得日益复杂,对这些系统的可解释性和可控性的需求也愈发迫切。
2026-01-06 19:38:46
593
原创 什么是 ‘Multi-user Graph Collaboration’:支持多个用户同时对一个 Agent 的决策路径进行投票和干预
各位同仁、技术爱好者们:今天,我们齐聚一堂,探讨一个在当前人工智能浪潮中日益凸显的关键议题:如何驯服和引导那些日益自主、复杂的AI智能体。随着AI模型的能力边界不断扩展,它们在医疗诊断、金融交易、自动驾驶乃至复杂的战略规划等领域展现出惊人的潜力。然而,伴随这种能力而来的,是对其决策过程透明度、可控性以及可靠性的深切担忧。传统的单一用户监控或事后审计机制,已经难以满足我们对AI系统在关键任务中实时干预和集体智慧校准的需求。正是在这样的背景下,我们引入并深入剖析一个极具前瞻性的概念:Multi-user Gra
2026-01-06 19:32:02
446
原创 探讨 ‘The Philosophy of Control’:在全自动化与完全受控之间,如何通过 LangGraph 寻找中间地带?
驾驭混沌与秩序:LangGraph 在全自动化与人类监督之间寻找控制的哲学各位同仁,下午好!今天,我们齐聚一堂,探讨一个在现代技术领域日益凸显的哲学与工程学交叉难题:在追求极致自动化效率的同时,如何保持对复杂系统的有效控制?我们面临的挑战并非简单地选择“完全自动化”或“完全受控”,而是在这两极之间,如何开辟一条既能利用人工智能的强大能力,又能确保人类智能始终处于关键决策与监督地位的中间地带。
2026-01-06 18:44:01
507
原创 解析 LangSmith 的 ‘Nested Trace’:如何通过深度树状视图定位 20 层嵌套循环中的逻辑瓶颈?
追踪是可观测性三大支柱(日志、指标、追踪)之一,它记录了请求从开始到结束在系统内流经的完整路径。一个“追踪”代表了一个端到端的请求流,它由一系列有时间顺序的“跨度”(Span)组成。跨度(Span):代表了追踪中的一个独立工作单元,比如一个函数调用、一个RPC请求、一个数据库查询。每个跨度都有一个名称、开始时间、结束时间、持续时间,并可能包含输入、输出、标签(Tags)、事件(Events)和错误信息。父子关系:跨度可以有父子关系,形成一个树状结构。
2026-01-06 18:42:48
232
原创 什么是 ‘Latency Budgeting’:为图中每一个节点设置纳秒级的超时阈值,实现强制故障转移
在具体实现之前,首先需要定义和传播延迟预算。延迟预算的定义可以采用自顶向下(Top-Down)或自底向上(Bottom-Up)的方法。自顶向下:从用户请求的整体SLA开始,逐层分解到每个微服务、每个内部操作的预算。例如,一个Web请求的SLA是100ms,它可能涉及数据库查询、缓存访问、多个微服务调用。我们需要为每个子操作分配一个合理的子预算。优点:与业务需求紧密结合,确保整体SLA可达。缺点:初期分解可能需要经验,且可能不完全符合底层服务的实际能力。自底向上。
2026-01-06 18:41:38
493
原创 深入 ‘Token Consumption Profiling’:在大规模图中精准定位哪一个‘思维步骤’最费钱?
假设我们执行了上述Cypher查询,并得到了以下模拟结果。# 模拟图数据库返回的原始结果# 将结果转换为LLM友好的字符串格式# 结合用户问题和原始结果构建Prompt,要求LLM进行摘要```jsonSummary:"""#### 4.4 步骤4: 多跳推理与合成 (Multi-hop Reasoning & Synthesis)在这个例子中,上述步骤已经足够回答用户问题。但如果用户提出更复杂的问题,例如“这个项目还有哪些员工,他们擅长什么其他技能,这些技能与项目需求是否匹配?
2026-01-06 18:40:27
220
原创 解析 ‘Mocking Nodes for Testing’:如何在不调用昂贵 API 的前提下,利用 Mock 数据进行全图压力测试?
在今天的探讨中,我们深入剖析了“Mocking Nodes for Testing”这一核心技术,旨在解决全图压力测试中面临的真实环境依赖、昂贵 API 调用和数据敏感性等诸多挑战。我们学习了如何构建可扩展的 Mock 数据集,如何实现高性能、可配置的 Mock 服务(包括 API 服务、内存数据库和消息队列),以及如何将这些组件与压力测试工具(如 Locust 和 Docker Compose)无缝集成。避免了真实 API 调用费用和复杂环境搭建成本。
2026-01-06 18:39:19
486
原创 什么是 ‘Diagnostic Nodes’:在生产图中插入不可见的‘心跳检测’节点以实时监控 Agent 健康度
各位同仁,各位技术领域的探索者们,大家好!今天,我们齐聚一堂,共同探讨一个在构建高可用、高性能分布式系统过程中至关重要的议题:如何实时、精确地掌握系统中各个Agent的健康状况。在宏大而复杂的生产图中,数据流与处理逻辑如同神经网络般交织,任何一个节点的滞后、阻塞甚至假死,都可能引发系统层面的雪崩效应。传统的监控手段,如日志分析、指标收集、外部健康检查等,固然不可或缺,但在某些极端场景下,它们可能存在时效性、粒度或覆盖范围的不足。今天,我将向大家介绍一种创新且极具潜力的监控范式——
2026-01-06 18:38:02
305
原创 解析 ‘Graph Hot-reloading’:如何在不中断当前运行任务的前提下,热更新部分节点的执行逻辑?
图的热更新无疑是一项复杂的工程任务,它涉及状态管理、并发控制、版本兼容性、原子性保障等诸多挑战。避免服务中断,保障用户体验和业务收益。能够快速响应业务变化、修复bug和部署优化,加速产品上市。结合金丝雀发布和快速回滚机制,可以更安全地进行生产环境的变更。核心在于解耦(将逻辑与节点实例解耦、将状态与逻辑解耦)和状态管理(优雅地捕获、迁移和恢复状态)。没有一劳永逸的解决方案,最佳策略取决于具体场景、节点特性(有状态/无状态)、以及对性能和复杂性的接受程度。
2026-01-06 18:36:50
354
原创 深入 ‘Bottleneck Analysis’:为什么并发节点不一定能提升吞吐?探讨 GIL 与网络 IO 的制约
全局解释器锁(Global Interpreter Lock, GIL)是CPython(Python的官方实现)为了保护解释器内部状态而引入的一个机制。它确保在任何时间点,只有一个线程在执行Python字节码。这意味着,即使你的Python程序运行在多核处理器上,并且你使用了多线程,由于GIL的存在,Python线程也无法真正地并行执行Python代码。它们会在GIL的控制下交替执行,实现的是并发而非并行。
2026-01-06 18:35:38
161
原创 解析 ‘Trace Filtering’:如何在海量的生产日志中,利用元数据快速定位特定失败模式的 Trace?
在海量生产日志的汪洋中,Trace Filtering 如同一盏明灯,指引我们穿越迷雾,直达问题的核心。通过精心设计和注入高质量的元数据,并结合强大的追踪系统查询能力,工程师们能够将复杂而耗时的故障诊断过程,转化为高效而精准的定位艺术。掌握 Trace Filtering,是现代分布式系统工程师不可或缺的关键技能,它不仅提升了我们的工作效率,更保障了我们系统的稳定运行和用户的满意度。
2026-01-06 18:34:33
650
原创 什么是 ‘Shadow Execution’:新版逻辑节点在后台静默运行并与原版对比,验证其安全性后再上线
各位同仁,下午好!今天,我们聚焦一个在现代软件工程中日益重要的概念——“影子执行”(Shadow Execution)。在快速迭代、高并发、强一致性的业务场景下,如何安全、高效地部署新功能、优化核心逻辑,一直是摆在我们面前的巨大挑战。传统的测试方法,如单元测试、集成测试、端到端测试,以及预生产环境(Staging)测试,虽然不可或缺,但在面对生产环境的真实流量、复杂数据以及瞬息万变的用户行为时,总会显得力不从心。部署新代码到生产环境,就如同走钢丝,每一步都充满未知与风险。
2026-01-05 21:30:12
628
原创 解析 ‘Privacy-preserving RAG’:在将数据存入状态前,自动识别并掩蔽个人敏感信息(PII)
一个典型的RAG工作流包括:数据摄取(Ingestion)、数据分块(Chunking)、嵌入(Embedding)、存储(Storage,通常是向量数据库)、检索(Retrieval)以及最终的生成(Generation)。本次讲座的核心将聚焦于一个具体的、至关重要的环节:在将数据存入RAG系统的知识库(如向量数据库)之前,自动识别并遮蔽(masking)个人敏感信息(PII)。我们的目标是在第2步和第3步之间插入一个PII处理层,确保在数据进入第3步(分块)之前,所有可识别的PII都已被遮蔽。
2026-01-05 21:29:04
551
原创 探讨 ‘Ethical Checkpoints’:如何在 Agent 产生歧视或偏见输出时,通过图边缘自动重定向至‘修正节点’
各位来宾,各位同仁,大家好!今天,我们齐聚一堂,探讨一个在人工智能时代日益紧迫且至关重要的话题:如何确保我们的AI代理(Agent)在复杂多变的交互中,始终坚守伦理底线,避免产生歧视或偏见输出。随着AI技术飞速发展,代理在各行各业扮演着越来越重要的角色,从客户服务到医疗诊断,从金融决策到内容创作。然而,这些代理,无论其设计初衷多么良善,都可能因为训练数据、算法设计甚至部署环境等多种因素,无意中学习并放大人类社会中固有的偏见,最终导致歧视性输出。这不仅损害了用户体验,更可能造成严重的社会不公和法律风险。
2026-01-05 21:28:03
638
原创 解析‘自动化 DevOps Agent’:利用 LangGraph 实现从 Bug 报告到代码修复、回归测试的全流程闭环
Bug报告接收与解析:智能体接收原始Bug报告,并对其进行结构化解析。代码环境准备:从版本控制系统拉取相关代码。问题定位与修复规划:分析Bug报告和代码库,生成详细的修复计划。代码修复实施:根据计划修改代码。测试用例生成与执行:编写新的测试用例,并运行所有相关测试(包括回归测试)。结果评估与决策:根据测试结果决定是提交修复、重新尝试,还是请求人工介入。代码提交与通知:如果修复成功,将代码提交到版本控制系统,并更新Bug报告状态。
2026-01-05 21:26:57
771
原创 什么是‘智能法律助手’:构建一个支持多轮反问、证据提取、合规对比的‘递归式’合同审查图
从线性文本处理到深层知识图谱的转变,以及从被动问答到主动反问的交互模式,代表了法律科技发展的一个重要里程碑。通过将合同内容转化为可推理的递归式图谱,我们正逐步构建一个能够理解、分析乃至“思考”法律问题的智能系统,为法律行业的数字化转型注入强大动力。这不仅是技术的胜利,更是人类智慧与机器智能协同演进的生动实践。
2026-01-05 21:25:42
586
原创 深入‘金融量化分析 Agent’:实时抓取多源数据并在图中进行一致性检验,输出带置信度的交易建议
数据一致性检验是指检查数据在逻辑上、统计上以及不同来源之间是否保持一致。单一数据源内部的数据是否符合逻辑规则。例如,日K线中和必须成立。交易量不能为负。不同数据源对同一金融产品在同一时间点的报告是否相符。这是我们本讲的重点。数据是否按预期的频率连续,是否存在大的跳变或缺失。数据是否偏离其历史统计分布,是否存在异常值(outliers)。置信度是一个量化Agent最能体现其智能水平的指标之一。它反映了Agent对其自身预测准确性的信心。对于分类模型,方法直接给出每个类别的预测概率。
2026-01-05 21:24:30
757
原创 解析‘多语言翻译与本地化 Agent’:实现‘初译-专家审核-语境优化-回译验证’的四级质量回路
尊敬的各位同仁,女士们,先生们,欢迎来到今天的技术讲座。今天,我们将深入探讨一个在当今全球化时代至关重要的主题:如何构建一个高性能、高可靠的“多语言翻译与本地化Agent”。尤其值得关注的是,我们将聚焦于其核心创新——一个实现“初译-专家审核-语境优化-回译验证”的四级质量回路,以确保翻译和本地化内容的卓越品质。随着全球市场的日益融合,企业对高质量、高效率的多语言内容需求呈指数级增长。
2026-01-05 21:23:26
806
原创 什么是‘自动化科研助手’:在图中集成搜索、读图、数学计算与公式验证,辅助科学家撰写论文摘要
这是自动化科研助手的“大脑”,它负责将前面所有模块收集、处理和验证的信息进行综合,并利用大型语言模型(LLM)的强大生成能力,撰写出符合科学规范、重点突出、引人入胜的论文摘要。核心功能:接收来自搜索、图像、计算和验证模块的结构化与非结构化信息。结合论文全文(如果可用)和已提取的关键信息,理解研究的背景、方法、结果和结论。将文本、数值、图表洞察等不同模态的信息转化为LLM可理解的输入。根据设定的目标(例如,强调创新点、突出量化结果),生成初稿。
2026-01-05 21:22:16
708
原创 深入‘电商导购专家’:利用多模态节点识别用户肤质,并在图中匹配最合适的护肤品配方库
知识图谱由实体(Entities)和关系(Relations)构成。我们需要定义一套丰富的实体和关系来描述护肤品领域。核心实体 (Entities):包含用户ID、肤质类型(通过多模态识别得出)、年龄、性别、历史购买记录、偏好成分等。如“干性”、“油性”、“敏感肌”、“痘痘肌”、“混合偏干”等。如“补水保湿”、“控油祛痘”、“美白淡斑”、“抗衰老”、“修复屏障”、“舒缓敏感”等。如“玻尿酸”、“烟酰胺”、“水杨酸”、“神经酰胺”、“视黄醇”等。
2026-01-05 21:21:10
567
原创 解析‘智能运维机器人’:通过监控报警触发图执行,自动执行链路排查、日志聚合与临时扩容操作
获取到原始日志后,机器人需要对其进行分析,提取关键信息。关键词匹配:查找“ERROR”、“EXCEPTION”、“TIMEOUT”、“FAILED”等关键词。模式识别:识别常见的错误模式,例如数据库连接池耗尽、NPE (Null Pointer Exception)、OOM (Out Of Memory)等。这可以通过预定义的正则表达式或简单的NLP技术实现。异常检测:统计日志中特定事件的频率,与历史基线进行对比,发现异常增多的事件。堆栈轨迹提取。
2026-01-05 21:20:09
492
原创 解析‘政务咨询 Agent’:如何处理海量政策法规并实现精准的‘政策匹配’与‘疑难解答’逻辑回路
政务咨询 Agent 的构建,是一个将前沿人工智能技术与公共服务深度融合的典范。它不仅是一个技术系统,更是连接政府与民众、提升社会治理能力的桥梁。通过持续的技术创新、严谨的工程实践以及人机协作的模式,我们有理由相信,智能政务咨询 Agent 将在未来发挥越来越重要的作用,为构建更加高效、透明和智能的政府贡献力量。
2026-01-05 21:19:07
537
原创 探讨‘教育辅导机器人’:根据学生的掌握程度,在图中动态生成个性化的知识复习与测试路径
各位技术同仁,教育领域的创新从未停止,而人工智能的浪潮正在将其推向一个全新的高度。。作为一名编程专家,我将从系统架构、核心算法到具体代码实现,为您全面剖析这一复杂而精妙的系统。
2026-01-05 21:18:06
601
原创 逻辑题:如果一个 Agent 在环形图中无法区分‘正在思考’与‘陷入死循环’,你该如何设计通用的检测算法?
在构建自主智能系统时,区分Agent的“深思熟虑”与“陷入死循环”是一项不可或缺的能力。一个健壮的通用检测算法需要超越简单的状态重复判断,深入结合图论的循环检测机制、多维度的进展指标、自适应的阈值管理以及灵活的系统架构。这不仅是算法的艺术,更是工程的智慧,旨在确保Agent在复杂多变的环境中,能够高效、智能地完成任务,而非无休止地在数字的迷宫中徘徊。
2026-01-05 21:17:05
581
原创 面试必杀:详细描述从用户提问到图结束,中间经历的所有 `__start__` 节点初始化与 `__end__` 状态回收的物理细节
从用户发出一个简单的指令,到系统内部一个复杂的计算图实例完成其所有步骤并最终回收资源,这背后是精密的软件工程设计和大量底层物理资源的协同工作。对__start__节点初始化和__end__状态回收的深入理解,不仅是构建健壮、可伸缩、可观测的分布式系统的关键,更是将业务逻辑转化为高效执行流程的必杀技。
2026-01-05 21:16:00
797
原创 深度挑战:设计一个具备‘自省(Self-introspection)’能力的 Agent,它能实时报告自己的 Token 剩余额度并调整思考深度
我们首先定义几种思考策略,它们将对应不同的提示词工程和LLM参数设置。"""定义智能体的思考深度级别。"""DEEP = "DEEP" # 深度思考:详细的推理、多步CoT、丰富的内容MODERATE = "MODERATE" # 中等思考:简明的推理、关键CoT步骤、主要内容SHALLOW = "SHALLOW" # 浅层思考:直接的答案、无CoT或极简CoT、精炼内容CONCISE = "CONCISE" # 紧凑思考:最直接的答案,可能牺牲部分准确性以节省Token"""
2026-01-05 21:14:56
397
原创 面试必杀:对比 LangGraph 的 `StatefulGraph` 与传统微服务编排(如 Temporal)在处理 LLM 推理时的本质差异
各位编程领域的同仁们,大家好!今天,我们将深入探讨一个在构建现代智能应用中至关重要的话题:如何高效、可靠地编排大型语言模型(LLM)的推理流程。随着LLM能力的飞速发展,我们不再满足于单次的API调用,而是追求构建能够进行多步推理、工具使用、状态管理乃至人机协作的复杂智能体(Agent)。在这个过程中,编排工具的选择变得尤为关键。我们面前摆着两类截然不同的解决方案:一类是以LangGraph的为代表的,专为LLM智能体设计、强调内部状态管理的图式框架;
2026-01-05 21:13:44
610
原创 深度挑战:如何实现一个‘跨模型迁移’的图——让逻辑在 GPT-4o 上运行一半后,无缝迁移到 Claude 3.5 tiếp tục执行?
首先,我们定义图中的核心元素:节点(Node)和图(Graph)。"""图中的一个节点,代表一个独立的任务。"""self.node_id = node_id # 节点的唯一标识符self.task_type = task_type # 任务类型,如 'llm_inference', 'tool_use', 'data_processing'self.config = config # 任务的具体配置,如prompt_template, temperature, tool_name等。
2026-01-05 21:12:26
932
原创 逻辑题:解析‘确定性硬编码’与‘概率性大模型预测’在图中竞争控制权时的最佳平衡点
DHC是指通过显式编写代码逻辑、定义明确的规则、配置固定的参数,来精确控制程序行为的方式。它的核心特点是:给定相同的输入,在相同的环境下,系统总是产生相同的、可预测的输出。这种方法基于人类的显式知识和逻辑推理,结果是可解释、可审计且高度可靠的。
2026-01-05 21:11:20
763
原创 面试必杀:什么是 ‘LangGraph Cloud’ 的底层并行架构?它如何处理数万个 Persistent Threads 的并发调度?
LangGraph Cloud通过其精心设计的分布式、事件驱动、异步并行架构,成功地将复杂的、有状态的LangGraph工作流转化为可大规模伸缩的服务。其核心在于将每个Persistent Thread视为一个独立的、可分片和调度的工作单元,并通过无状态Worker、高效的消息队列和坚固的状态持久化层,实现了数万个线程的并发管理。这种架构不仅提供了卓越的性能和伸缩性,更重要的是,它保障了高度的弹性和容错能力,确保即使在面对高负载和部分组件故障时,用户的工作流也能稳定可靠地运行。
2026-01-05 21:10:21
822
原创 深度思考:随着模型推理成本的下降,我们是否应该倾向于‘无限循环的自我修正’而非‘单次高质量推理’?
SHQI的核心思想是最大限度地提高模型在单次调用中生成高质量、准确和完整输出的能力。它强调“一次成功”,避免不必要的重复调用。
2026-01-05 21:09:15
681
AI智能PHP版文件夹翻译器
2025-11-11
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅