618.曲面的侧

文章讨论了曲面的侧的概念,区分了单侧曲面和双侧曲面。双侧曲面的法线方向在曲面上连续且唯一确定,而单侧曲面则不具备这一性质。通过对曲面上一点法线方向的选择,可以唯一地决定整个曲面的侧。连续性条件确保了法线方向随着点的位置变化而连续变化。
摘要由CSDN通过智能技术生成

618.曲面的侧

对曲面的侧的直觉认识

如果曲面由形如 z = f ( x , y ) z=f(x,y) z=f(x,y) 的显示方程给出, 可以说这曲面的上侧或者下侧.

我们常常采取这种说法, 这时是指 z z z 轴垂直向上.

如果曲面包围着一个立体, 容易想象它的两侧, 朝向立体的内侧, 朝向立体的周围空间的外侧.

从这个直觉的概念出发, 我们现在要对曲面的侧这个概念给以精确的定义.

对象

考虑一个光滑曲面 ( S ) (S) (S), 它是封闭的或者是由分段光滑的边界围成, 曲面上没有奇点.

因此, 曲面上各点都有确定的切面.

切面的位置随着切点位置的改变而连续地改变.

在曲面上取一定点 M 0 M_{0} M0, 并在这点引一法线, 这法线有两个可能的方向.

它们可用方向余弦的符号来区别.

我们认定其中一方向.

沿曲面画一个起自 M 0 M_{0} M0 而又回到 M 0 M_{0} M0 的闭路, 并假定它不越过曲面的边界, 令点 M M M 沿着这闭路环行, 并在其各个接续的位置上给予法线一个方向;

这些方向就是由我们在起点 M 0 M_{0} M0 处所选定的那个法线方向连续地转变来的.

这时下面两种情形必有一种发生:

令点 M M M 环行一周再回到 M 0 M_{0} M0 时, 法线的方向或与出发时所定者相同, 或与出发时所定者相反.

如果对于某一点 M 0 M_{0} M0 及某一通过 M 0 M_{0} M0 的闭路 M 0 A M 0 M_{0}AM_{0} M0AM0, 后一种情形发生, 则对于其它任一点 M 1 M_{1} M1 也容易作出一个起自 M 1 M_{1} M1 而又回到 M 1 M_{1} M1的闭路, 使回到 M 1 M_{1} M1 时法线的方向与起初所定者相反.

例如, 假若我们理解 M 1 M 0 M_{1}M_{0} M1M0 为曲面上连接 M 1 M_{1} M1 M 0 M_{0} M0 两点但不越过曲面的边界的任一曲线, 而 M 0 M 1 M_{0}M_{1} M0M1 为与其方向相反的同一曲线, 则 M 1 M 0 A M 0 M 1 M_{1}M_{0}AM_{0}M_{1} M1M0AM0M1 就是这样的一个闭路.

在这情况下曲面叫做单侧的.

所谓的默比乌斯带就是这类曲面的一个典型的例子.

如果我们把一长方形纸条 ABCD 先扭一次, 再粘起来, 使 A A A 点与 C C C 点相合, B B B 点与 D D D 点相合, 我们就可得到它的一个模型.

假若用一种颜色来涂这个扭成的环带, 那就可以不越过它的边界而用这种颜色涂遍环带的全部.

像这一类的曲面不在我们今后讨论之列.

现在我们假定不论 M 0 M_{0} M0 是怎样的点, 不论通过 M 0 M_{0} M0 而不越过曲面边界的线是怎样的闭路, 沿此线进行一周再回到起点 M 0 M_{0} M0 时, 法线的方向与起初所定者相同.

在这些条件下的曲面叫做双侧的.

S S S 是一个双侧曲面.

S S S 上任取一点 M 0 M_{0} M0, 并给这点的法线一个确定的方向, 取这曲面的其它任一点 M 1 M_{1} M1, 我们用任一个在曲面上但不越过曲面边界的道路 ( K ) (K) (K) 来连接 M 0 M_{0} M0 M 1 M_{1} M1, 并令点 M M M 沿这道路从 M 0 M_{0} M0 进行到 M 1 M_{1} M1.

如果这时法线的方向连续地改变, 则点 M 0 M_{0} M0 到达 M 1 M_{1} M1 的位置时就带着一个完全确定的法线方向, 不依赖于道路 ( K ) (K) (K) 的选择.

实际上, 假若说 M M M 沿着两个不同的道路 ( K 1 ) (K_{1}) (K1) ( K 2 ) (K_2) (K2) M 0 M_0 M0 进行到 M 1 M_1 M1 时, 我们会到 M 1 M_{1} M1 点得到两个不同的法线方向, 则闭路 M 0 ( K 1 ) M 1 ( K 2 − 1 ) M 0 M_{0}(K_{1})M_{1}(K_{2}^{-1})M_{0} M0(K1)M1(K21)M0 就会使得回到 M 0 M_{0} M0 时所带的法线方向不同于起初的法线方向.

这和双侧曲面的定义相矛盾.

由此可见, 在双侧曲面上, 选定了一个点上的法线方向便唯一地决定全部点上的法线方向的选择.

曲面上全部, 点的集合连同那按指定的规则对这全部点上的法线所给予的方向, 叫做曲面的一个定侧.

[Remark 1]

特别是, 从所引入的定义与前面对此所作的说明, 可以作出对今后来说重要的结论.

  • 首先, 曲面的侧完全由此曲面上在每一点的法线方向(两个可能的方向中的一个)所确定.
  • 第二, 前面所提到的选择不是随意的, 所考察的曲面上相应于点 M M M 的法线方向应当连续地依赖于点 M M M 的位置.

    这一要求只有表为方向余弦的说法才是方便的:

    在点 M M M 选择的法线方向与坐标轴夹角的余弦 —— cos ⁡ λ , cos ⁡ μ , cos ⁡ v \cos\lambda, \cos\mu, \cos v cosλ,cosμ,cosv —— 应是 M M M 的连续数值函数.

    这后一连续性条件的表述在今后常常会用到.

    应指出, 正是由于连续性条件,在定侧时, 仅在曲面的一点上确定法线方向才是可以的 —— 曲面在其余点的方向已经成为确定的了.

  • 最后, 第三, 由单侧曲面与双侧曲面的定义得出, 事实上单侧曲面不可能有侧, 同时易见双侧曲面总是有且仅有两侧, 前面所说也证实名词“双侧曲面”本身是有道理的.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值