给定一个非负索引 k,其中 k ≤ 33,返回杨辉三角的第 k 行。 在杨辉三角中,每个数是它左上方和右上方的数的和。
示例: 输入: 3
输出: [1,3,3,1]
思想仿照118,创建二维数组,构成边长为rowIndex+1的杨辉三角,最后返回指定行。注意题目给的行数包括0行,不是从1开始。
class Solution {
public:
vector<int> getRow(int rowIndex) {
vector<vector<int>> vec(rowIndex+1);
for(int i=0;i<=rowIndex;i++){
vec[i].push_back(1);
for(int j=1;j<i;j++){
vec[i].push_back(vec[i-1][j-1]+vec[i-1][j]);
}
if(i>0) vec[i].push_back(1);
}
return vec[rowIndex];
}
};
执行用时 :8 ms, 在所有 C++ 提交中击败了12.35% 的用户
内存消耗 :9.1 MB, 在所有 C++ 提交中击败了5.26%的用户
修改1:减少内存使用,不存储整个三角,仅用一个数组;减少vector push_back操作,该操作及其费时。
每个元素的值,(除了第一个元素),在每次循环中,值为j的值加上j-1的值。用倒序,避免先覆盖了j-1的元素。
class Solution {
public:
vector<int> getRow(int rowIndex) {
vector<int> vec(rowIndex+1,0); //初始化元素个数与初始值:0
vec[0]=1;
for(int i=0;i<=rowIndex;i++){
for(int j=i;j>=1;j--) vec[j]+=vec[j-1];
}
return vec;
}
};
执行用时 :0 ms, 在所有 C++ 提交中击败了100.00% 的用户
内存消耗 :8.7 MB, 在所有 C++ 提交中击败了22.68%的用户