279、给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, ...)使得它们的和等于 n。你需要让组成和的完全平方数的个数最少。
示例 1:
输入: n = 13
输出: 2
解释: 13 = 4 + 9.
dp[i] = min(dp[i], dp[i-j*j] + 1);
步长为完全平方数j*j,dp[i]为i一个步长j*j之前的数的完全平方数个数dp[i-j*j] + 1
// dp[i]:数i需要最少的完全平方数个数。
// 状态转移:对步长进行遍历。步长为完全平方数j*j,dp[i]为i一个步长j*j之前的数的完全平方数个数dp[i-j*j] + 1--(j*j)
class Solution {
public:
int numSquares(int n) {
vector<int> dp(n + 1, 0);
for(int i = 1; i <= n; i++){
dp[i]= i; // 初始化,最多全由1组成,个数为i个
for(int j = 1; j*j <= i; j++){ // 按前一步步长变化,进行转移
dp[i] = min(dp[i], dp[i-j*j] + 1);
}
}
return dp[n];
}
};
结果:
执行用时:268 ms, 在所有 C++ 提交中击败了52.60% 的用户
内存消耗:9 MB, 在所有 C++ 提交中击败了56.35% 的用户
300、给定一个无序的整数数组,找到其中最长上升子序列的长度。
示例:
输入: [10,9,2,5,3,7,101,18]
输出: 4
解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4。
状态转移:找一个nums[j]<nums[i] && dp[j]为max的。 !!找准前一个状态!!
dp[i] = dp[j] + 1;
// dp[i]:以i结尾的最长上升序列
// 状态转移:找一个nums[j]<nums[i] && dp[j]为max的
// dp[i] = dp[j] + 1;
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
int n = nums.size();
if(n == 0) return 0;
vector<int> dp(n ,0);
dp[0] = 1;
int ans = 1;
for(int i = 1; i < n; i++){
int tmp = 0, id = i;
for(int j = i - 1; j >= 0; j--){
if(nums[i] > nums[j] && tmp < dp[j]) id = j, tmp = dp[j];
}
dp[i] = dp[id] + 1;
ans = max(ans, dp[i]);
}
return ans;
}
};
结果:
执行用时:68 ms, 在所有 C++ 提交中击败了69.61% 的用户
内存消耗:7.8 MB, 在所有 C++ 提交中击败了31.96% 的用户
304、给定一个二维矩阵,计算其子矩形范围内元素的总和,该子矩阵的左上角为 (row1, col1) ,右下角为 (row2, col2)。
上图子矩阵左上角 (row1, col1) = (2, 1) ,右下角(row2, col2) = (4, 3),该子矩形内元素的总和为 8。
示例:
给定 matrix = [
[3, 0, 1, 4, 2],
[5, 6, 3, 2, 1],
[1, 2, 0, 1, 5],
[4, 1, 0, 1, 7],
[1, 0, 3, 0, 5]
]sumRegion(2, 1, 4, 3) -> 8
sumRegion(1, 1, 2, 2) -> 11
sumRegion(1, 2, 2, 4) -> 12说明:
- 你可以假设矩阵不可变。
- 会多次调用 sumRegion 方法。
- 你可以假设 row1 ≤ row2 且 col1 ≤ col2。
dp[i][j] = dp[i][j-1] + dp[i-1][j] - dp[i-1][j-1] + nums[i][j]
注意0行,0列,(0,0)
// dp[i][j] : 记录从(0,0)到(i,j)的的矩阵元素和
// dp[i][j] = dp[i][j-1] + dp[i-1][j] - dp[i-1][j-1] + nums[i][j]
class NumMatrix {
public:
vector<vector<int>> dp;
int m, n;
NumMatrix(vector<vector<int>>& matrix) {
if(matrix.size() == 0 || matrix[0].size() == 0) {dp = {{}}; return; }
m = matrix.size(), n = matrix[0].size();
dp.resize(m);
for(int i = 0; i < m; i++){
dp[i].resize(n, 0);
for(int j = 0; j < n; j++){
if(i == 0 && j == 0) dp[i][j] = matrix[i][j];
else if(i == 0) dp[i][j] = dp[i][j-1] + matrix[i][j];
else if(j == 0) dp[i][j] = dp[i-1][j] + matrix[i][j];
else dp[i][j] = dp[i-1][j] + dp[i][j-1] - dp[i-1][j-1] + matrix[i][j];
}
}
}
int sumRegion(int row1, int col1, int row2, int col2) {
if(dp[0].size() == 0 || row1 < 0 || row1 >= m || row2 < 0 || row2 >= m || col1 < 0 || col1 >= n || col2 < 0 || col2 >= n) return 0;
if(row1 == 0 && col1 == 0) return dp[row2][col2];
else if(row1 == 0) return dp[row2][col2] - dp[row2][col1-1];
else if(col1 == 0) return dp[row2][col2] - dp[row1-1][col2];
else return dp[row2][col2] - dp[row1-1][col2] - dp[row2][col1-1] + dp[row1-1][col1-1];
}
};
/**
* Your NumMatrix object will be instantiated and called as such:
* NumMatrix* obj = new NumMatrix(matrix);
* int param_1 = obj->sumRegion(row1,col1,row2,col2);
*/
结果:
执行用时:44 ms, 在所有 C++ 提交中击败了58.01% 的用户
内存消耗:15 MB, 在所有 C++ 提交中击败了8.34% 的用户