题目背景
Update on 2023.2.1:新增一组针对 @yuanjiabao 的 Hack 数据,放置于 #21。
Update on 2023.2.2:新增一组针对 @CourtesyWei 和 @bizhidaojiaosha 的 Hack 数据,放置于 #22。
题目描述
小 L 给你一个偶数 n 和两个整数a,b,请你构造一个长为 n 的排列 p,使得其满足 ∑2npi≥a 且2n+1∑npi≥b。
输入格式
本题有多组测试数据。
第一行,一个整数 T,表示数据组数。
对于每组数据:
一行,三个整数 n,a,b。
输出格式
对于每组数据,如果无解,输出 -1;否则,输出一行,n 个整数,表示你构造出的排列 p。
如有多解,输出任意一组均可。
输入输出样例
输入 #1复制
2 6 6 12 6 8 14
输出 #1复制
1 6 2 5 3 4 -1
说明/提示
本题开启 Special Judge。
SubtaskSubtask | n | a,b | 分值 |
---|---|---|---|
11 | 2≤n≤10 | 无特殊限制 | 20pts |
22 | 无特殊限制 | a=b=0 | 10pts |
33 | 同上 | a=0 或 b=0 | 10pts |
44 | 同上 | 无特殊限制 | 60pts |
对于 100%的数据,2≤n,∑n≤105,0≤a,b≤2n(n+1),1≤T≤10,n 为偶数。
解析 :
首先,如果(n+1)*n/2>a+b,那么肯定没有正确答案,所以直接返回输出-1即可
否则,就有可能有可能有正确的答案;
我们可以先处理前n/2个,使其满足 suma>=a ,当然为了是 sumb>=b,我们要尽可能使 suma >=a,的情况下尽可能的小,这样才能使后面的sumb尽可能的大;
到这里,就已经有贪心的思路了:在满足要求的情况下尽可能的使答案最优,且满足二段性。
所以我们可以贪心 suma ,使suma在满足题意的情况下最优,然后判断剩下的数是否满足 sumb>=b,
#include<iostream>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<math.h>
#include<map>
using namespace std;
typedef long long LL;
const int N = 1e5 + 5;
LL n, a, b;
LL arr[N], brr[N];
int main() {
int T;
scanf("%d", &T);
while (T--) {
memset(brr, 0, sizeof brr);
scanf("%lld%lld%lld", &n, &a, &b);
if (a + b > n * (n + 1) / 2) {
cout << -1 << endl;
continue;
}
LL sum = 0;
for (int i = 1; i <= n / 2; i++) {
arr[i] = i;
sum += i;
}
LL t = n;
for (int i = n/2; i >0 && a > sum; i--) {
LL c = a - sum;
if (c <= t - arr[i]) {
arr[i] += c;
sum += c;
t--;
break;
}
else {
sum += t - arr[i];
arr[i] = t;
t--;
}
}
if ((1 + n) * n / 2 - sum < b || sum < a) {
cout << -1 << endl;
continue;
}
for (int i = 1; i <= n / 2; i++) {
brr[arr[i]] = 1;
}
for (int i = 1, j = n / 2 + 1; i <= n; i++) {
if (brr[i] == 0)
arr[j++] = i;
}
for (int i = 1; i < n; i++) {
printf("%lld ", arr[i]);
}
printf("%lld\n", arr[n]);
}
return 0;
}