本题需要你实现prufer序列与无根树之间的相互转化。
假设本题涉及的无根树共有 n 个节点,编号 1∼n。
为了更加简单明了的描述无根树的结构,我们不妨在输入和输出时将该无根树描述为一个以 n 号节点为根的有根树。
这样就可以设这棵无根树的父亲序列为 f1,f2,…,fn−1,其中 fi 表示将该树看作以 n 号节点为根的有根树时,i 号节点的父节点编号。
同时,设这棵无根树的prufer序列为 p1,p2,…,pn−2。
现在,给定一棵由 n 个节点构成的无根树,以及该无根树的一个序列(父亲序列或prufer序列),请你求出另一个序列。
输入格式
输入共两行。
第一行包含两个整数 n,m,表示无根树的节点数以及给定序列类型。
如果 m=1,则第二行包含 n−1 个整数,表示给定序列为父亲序列。
如果 m=2,则第二行包含 n−2 个整数,表示给定序列为prufer序列。
输出格式
共一行,输出另一个序列,整数之间用单个空格隔开。
数据范围
2≤n≤10^5
输入样例1:
6 1
3 5 4 5 6
输出样例1:
3 5 4 5
输入样例2:
6 2
3 5 4 5
输出样例2:
3 5 4 5 6
解析:
prufer编码主要作用即将一棵无根树转化为一个序列(即prufer序列),另外prufer序列也可以反过来转化为一棵树,即prufer序列和树之间是一一对应的,常用来解决一些证明问题,如凯莱定理等
证明凯莱定理(一个无向完全图有 n^(n−2) 棵生成树):由于prufer序列和树之间是一一对应的关系,证明有多少棵不同的生成树即证明有多少种prufer序列,显然,prufer序列共有 n−2 项,其范围为 1∼n,故其种类数为 n^(n−2)
prufer编码的流程:假定 n 号节点为根,找到除根外度数最小的节点,在删除该节点之前,将其父节点输出,重复该流程,直到最后只剩下两个节点,即prufer序列只有 n−2 个元素,因为prufer序列最多 n−1 个元素,而最后一个元素一定为 n,所以这个元素可以省略,输出的元素即为prufer序列
如何将一棵树线性时间内转化为prufer序列?
假定当前出度为 0 且编号最小的节点为 j,则输出 f[j],删除 j 之后,出度为 0 的节点至多只会增加一个,即 f[j],判断删除 j 之后 f[j] 的出度是否为 0,如果 f[j] 的出度为 0 且 f[j]<j 说明 f[j] 是当前出度为 0 且编号最小的节点,递归输出这样的父节点即可,否则说明这样的 j 只会更大,即 j 只会增加,这样即可线性时间内将一颗树转化为prufer序列
如何将一个prufer序列转化为一棵树?
先将 n 这个节点加入到prufer序列中,不难发现,prufer序列中某个数出现的次数即为该数在树中的儿子节点的数量,从 1 开始找到儿子数量为 0 且编号最小的节点 j,其父节点即为当前遍历的prufer序列的元素,将该元素从prufer序列中删去,因为删除该元素后儿子数量为 0 的节点数量至多直接增加一个,如果该元素的儿子数量为 0 且编号小于 j,说明当前节点即为儿子数量为 0 且编号最小的节点,递归处理即可,这样的 j 同样也是递增的,故可以在线性时间内将一个prufer序列转化为一棵树
时间复杂度:O(n)
#include<iostream>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<math.h>
#include<map>
#include<sstream>
#include<deque>
#include<unordered_map>
#include<unordered_set>
#include<bitset>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
const int N = 1e5 + 10, M = 1e4 + 10;
const double INF = 1e8;
int n, m;
int f[N], d[N], p[N];
void tree2prufer() {
for (int i = 1; i < n; i++) {
scanf("%d", &f[i]);
d[f[i]]++;
}
for (int i = 1, j = 1; i < n - 1; j++) {
while (d[j])j++;
p[i++] = f[j];
while (i < n - 1 && --d [p[i-1]] == 0 && p[i - 1] < j)p[i++] = f[p[i - 1]];
}
for (int i = 1; i < n-1; i++) {
printf("%d ", p[i]);
}
}
void prufer2tree() {
for (int i = 1; i <= n-2; i++) {
scanf("%d", &p[i]);
d[p[i]]++;
}
p[n - 1] = n;
for (int i = 1, j = 1; i < n; j++, i++) {
while (d[j])j++;
f[j] = p[i];
while (i < n && --d[p[i]] == 0 && p[i] < j)f[p[i]] = p[i + 1], i++;
}
for (int i = 1; i < n; i++) {
printf("%d ", f[i]);
}
}
int main() {
cin >> n >> m;
if (m == 1)tree2prufer();
else prufer2tree();
return 0;
}