Ubuntu 安装 intel 编译器并配置Set Environment Variables

下载 intel 编译器

Free Intel® Software Development Tools

 下载Base Toolkit for Linux

Command Line Download

Command Line Installation Parameters

wget https://registrationcenter-download.intel.com/akdlm/irc_nas/18679/l_HPCKit_p_2022.3.0.8751_offline.sh

sudo sh ./l_HPCKit_p_2022.3.0.8751_offline.sh

Installation Instructions

The initial download is for the installer application files only. The installer will acquire all the tools during the installation process.

SStep 1: From the console, locate the downloaded install file.
Step 2: Use $ sudo sh ./<installer>.sh to launch the GUI Installer as root.
Optionally, use $ sh ./<installer>.sh to launch the GUI Installer as current user.
Step 3: Follow the instructions in the installer.
Step 4: Explore the Get Started Guide.

安装界面

 安装过程

配置环境变量 Set Environment Variables 

Get Started with the Intel® oneAPI HPC Toolkit for Linux*

Configure Your System

Set Environment Variables for CLI Development

Option 2: One time setup for setvars.sh

Environment variables can be set up to automatically set using one of the methods below:

使用modulefiles去设置环境变量

​​​​​​Use Modulefiles with Linux*

Run the modulefiles-setup.sh script.

/opt/intel/oneapi/modulefiles-setup.sh

### 如何在 Ubuntu 系统上正确设置 CUDA 环境变量 为了确保 CUDA 能够正常运行,环境变量的配置至关重要。以下是关于如何在 Ubuntu 上正确设置 CUDA 环境变量的具体说明。 #### 1. 编辑 `.bashrc` 文件 通过编辑用户的 shell 配置文件来永久保存环境变量设置。具体操作如下: 打开终端执行以下命令以编辑 `~/.bashrc` 文件: ```bash sudo nano ~/.bashrc ``` 在文件末尾追加以下内容(假设已安装 CUDA 的路径为 `/usr/local/cuda`): ```bash export PATH=/usr/local/cuda/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH ``` 上述两行分别设置了可执行程序路径和动态链接库路径[^2]。 完成修改后,需重新加载该文件使更改生效: ```bash source ~/.bashrc ``` #### 2. 验证环境变量是否成功设置 可以通过以下命令验证环境变量是否被正确添加到系统中: ```bash echo $PATH echo $LD_LIBRARY_PATH ``` 如果输出的结果包含了 `/usr/local/cuda/bin` 和 `/usr/local/cuda/lib64` 则表示设置成功。 #### 3. 测试 CUDA 安装情况 确认环境变量无误后,可以进一步测试 CUDA 是否能够正常使用。运行 NVIDIA 提供的一个示例工具 `deviceQuery` 来检测 GPU 参数: ```bash /usr/local/cuda/extras/demo_suite/deviceQuery ``` 此命令会显示当前系统的 GPU 设备详情以及 CUDA 支持状态[^5]。 #### 处理可能遇到的问题 - 如果出现 GCC 版本不兼容的情况,则需要按照官方文档调整编译器版本或者强制覆盖安装 CUDA 工具包时忽略版本校验错误:`sudo sh cuda_xxxxxxxxxxxxxx_linux.run --override`[^1]。 - 若因内核更新导致驱动异常工作,在无法启动图形界面的情况下可通过 GRUB 引导菜单选择旧版内核恢复模式进入系统解决冲突问题[^4]。 - 对于某些特定需求场景下还需要额外安装 OpenCL 开发套件支持,比如机器学习框架 TensorFlow 使用过程中可能会依赖它;此时只需简单执行一条APT指令即可完成部署:`sudo apt install nvidia-opencl-dev`[^3]。 ```python print("Environment variables have been set successfully.") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值