(01背包)洛谷 P2871 标准化模板 无优化

知识点:一个背包,一个小问题中仅有选与不选两个抉择

1、状态:dp[i][j]  前i件物品再j空间下的最大价值;

2、状态方程:1)空间不足:dp[i][j]=dp[i-1][j](不装第i件物品,与i-1件物品的价值相同);

                        2)空间足够:dp[i][j]=max(dp[i-1][j],dp[i-1][j-v[i]]+w[i])(装第i件物品,要在自己基                                                  础上加上没有装第i件物品时候的最大价值,和不装i件物品时的价值                                                  进行比较);

3、初始化;第0件物品和空间为0的数组置为0;

#include <iostream>
#include <cmath>
using namespace std; 

//物品个数,背包容量
int n,m;
//物品重量,物品价值 
int v[12805],w[12805];
//状态保存
int dp[12805][12805]; 

int main(){
	//初始化,dp默认为0不用手动初始化 
	cin>>n>>m;
	for(int i=1;i<=n;i++){
		cin>>v[i]>>w[i];
	}
	//状态转移
	for(int i=1;i<=n;i++){
		for(int j=1;j<=m;j++){
			if(j<v[i])
				dp[i][j]=dp[i-1][j];
			else
				dp[i][j]=max(dp[i-1][j],dp[i-1][j-v[i]]+w[i]);
		}
	} 
	cout<<dp[n][m];
} 

洛谷P2240部分背包问题是一个经典的动态规划问题。问题描述是这样的:给定n种物品和一个容量为V的背包。每种物品都有自己的重量w[i]和价值v[i]。求解将哪些物品装入背包可使这些物品的重量总和不超过背包容量,且价值总和最大。 这里的“部分背包”意味着我们可以选择物品的一部分放入背包中。这里给出一个C++的基本解法示例: ```cpp #include <iostream> #include <algorithm> using namespace std; int dp[1010][1010]; // dp[i][j] 表示前i件物品在不超过j重量的情况下可以获得的最大价值 int main() { int n, V; cin >> n >> V; for(int i = 0; i <= n; ++i) { for(int j = 0; j <= V; ++j) { dp[i][j] = 0; // 初始化dp数组为0 } } for(int i = 1; i <= n; ++i) { int w, v; cin >> w >> v; for(int j = 1; j <= V; ++j) { if(j >= w) { // 如果当前物品重量不超过背包容量,考虑取与不取两种情况,取最大值 dp[i][j] = max(dp[i-1][j], dp[i-1][j-w] + v); } else { // 如果当前物品重量超过背包容量,则不能取这个物品 dp[i][j] = dp[i-1][j]; } } } cout << dp[n][V] << endl; // 输出最大价值 return 0; } ``` 这段代码首先初始化一个二维数组dp,其中dp[i][j]表示考虑前i件物品,当背包容量为j时能够得到的最大价值。之后,通过双层循环,从后往前遍历所有物品,并计算在不超过背包容量的情况下,每种物品的取与不取的最大价值,最终得到的最大价值存储在dp[n][V]中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值