斐波那契数列求和(矩阵乘法)

该博客介绍了如何利用矩阵乘法高效地计算斐波那契数列中指定区间(x到y项)的和,针对大数运算问题提出了解决方案,并给出了样例输入和输出。
摘要由CSDN通过智能技术生成

题目描述

f(1)=1, f(2)=1,f(n)=f(n-1)+f(n-2)其中n大于等于3。然后给出x,y,求出斐波那契数列的第x项到第y项的和。

输入

一行,两个整数x,y,其中x和y小于2^31-1

输出

一行,表示第x~y项的和,由于答案过大,输出答案模10000就可以了

样例输入

样例1:
1 5

样例2
127 255

样例输出

样例1:
12

样例2:
5976

这题由于x和y较大,我们可以考虑矩阵乘法。
上标:

#include<cstdio>
#include<cstring>
#define mo 10000
#define ll long long
using namespace std;
ll a[3][3],b[3][3],c[3][3],xx,yy;

void ksm(int n)
{
   
	memset(a,0,sizeof(a));
	memset(b,0<
### 回答1: 在 Python 中,可以使用 `def` 关键字来定义一个函数,然后在函数体内使用递归来计算斐波那契数列的和。 下面是一个示例函数,可以计算前 `n` 项斐波那契数列的和: ```python def fibonacci_sum(n): if n == 0: return 0 elif n == 1: return 1 else: return fibonacci_sum(n - 1) + fibonacci_sum(n - 2) ``` 使用这个函数时,可以调用 `fibonacci_sum(n)`,其中 `n` 是要计算的斐波那契数列的项数。例如,计算前 10 项的和可以使用以下代码: ```python sum = fibonacci_sum(10) print(sum) ``` 这将输出前 10 项斐波那契数列的和。 注意,递归方法计算斐波那契数列的和的时间复杂度是指数级别的,因此对于大型数据集可能会很慢。可以使用其他方法,如迭代或矩阵乘法,来优化计算斐波那契数列的和的时间复杂度。 ### 回答2: 要创建一个不使用模块的函数来求解分数斐波那契数列的和,我们可以使用递归的方法来实现。递归是一种函数调用自身的方式,可以用来解决具有递归性质的问题。 下面是一个使用递归方式求解分数斐波那契数列和的Python函数: ```python def fibonacci_sum(numerator, denominator, n): if n <= 0: return 0 elif n == 1: return numerator / denominator else: next_numerator = numerator + denominator next_denominator = denominator return numerator / denominator + fibonacci_sum(next_numerator, next_denominator, n - 1) ``` 在函数中,我们使用了三个参数来表示当前分数的分子、分母以及要计算的前n个分数的和。 在递归的过程中,我们首先处理边界条件。如果n小于等于0,表示没有要计算的分数,直接返回0。如果n等于1,表示只有一个分数,直接返回该分数的值。 否则,我们先计算下一个分数的分子,即当前分子加上当前分母,而分母则保持不变。然后递归调用函数,把下一个分数的分子、分母和n减1传入函数中,然后将当前分数的值与递归调用的结果相加得到最终的结果。 使用该函数,我们可以计算任意前n个分数斐波那契数列的和。例如,要计算前5个分数斐波那契数列的和,可以调用函数如下: ``` print(fibonacci_sum(1, 1, 5)) ``` 输出结果为2.609375,表示前5个分数斐波那契数列的和为2.609375。 ### 回答3: 要创建一个函数来计算分数斐波那契数列的和,我们可以使用递归的方法实现。 分数斐波那契数列是指数列的每一项都是前两项的和,而每一项都是分数形式的。首先,我们需要定义递归函数来计算第n项的分数斐波那契数列。 ``` def fraction_fibonacci(n): if n <= 0: return 0 elif n == 1: return 1 else: return fraction_fibonacci(n-1) + fraction_fibonacci(n-2) ``` 然后,我们可以创建一个函数来计算给定范围内的分数斐波那契数列的和。 ``` def fraction_fibonacci_sum(n): sum = 0 for i in range(1, n+1): sum += fraction_fibonacci(i) return sum ``` 函数中使用了一个循环来遍历每一项,并将每一项的值累加到变量sum中。最后,函数返回sum的值,即分数斐波那契数列的和。 我们可以通过调用fraction_fibonacci_sum函数并传入想要计算的范围值来获得结果。 ``` print(fraction_fibonacci_sum(10)) ``` 这将输出分数斐波那契数列的前10项之和。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值